
Exploiting Nil-Externality for
Fast Replicated Storage

Aishwarya Ganesan, Ramnatthan Alagappan (VMware Research)

Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau (University of Wisconsin – Madison)

Interfaces

“Defining interfaces is the most important part of system design”

– Butler Lampson, Hints for Computer System Design

Well-designed interfaces lead to desirable properties
idempotent interfaces make failure recovery simple [Sandberg, 1986]

commutative interfaces enable scalable implementation [Clements et al., 2013]

2

Do some storage interfaces enable higher performance than others?

Nil-Externality

Nil-externalizing (or nilext) interface

can modify storage system state in any way

but does not externalize its effects or state immediately

A system can defer executing a nilext operation, improving performance

Nilext interfaces are prevalent in storage systems
all updates are nilext in key-value stores such as RocksDB and LevelDB

Twemcache production traces reveal in 80% clusters, 90% updates are nilext

3

This Work

In this paper, we exploit nilext interfaces for fast replicated storage

Current replication protocols are oblivious to storage interfaces
involve expensive coordination to order requests
updates incur two roundtrips

We build Skyros, a nilext-aware replication protocol

Key insight: defer coordination until state is externalized
complete nilext updates in one roundtrip

Skyros offers linearizability and achieves up to 3x lower latencies compared
to Paxos (w/ batching)

4

Introduction

Strongly consistent storage background

Nilext-aware replication

Evaluation

Outline

Strongly Consistent Storage Systems

A standard approach to building strongly consistent storage

6

Local Storage System Replication Protocol

Paxos

Replicated Storage

P
ax

o
s/

R
af

t/
V

R

Applications

Replicas execute same operations in same order – ensures linearizability

Examples: ZippyDB (Paxos-replicated RocksDB), Harp (VR-replicated FS)

Ordering is Expensive

7

client1

leader

log

store

followers

store

store
client2

log

log

Several steps to update replicated data

Ordering is Expensive

7

client1

leader

log

store

followers

store

store
client2

log

log

Several steps to update replicated data

Ordering is Expensive

7

client1

leader

log

store

followers

store

store
client2

log

log

Several steps to update replicated data

Ordering is Expensive

7

client1

leader

log

store

followers

store

store
client2

log

log

Several steps to update replicated data

Ordering is Expensive

7

client1

leader

log

store

followers

store

store
client2

log

log

Several steps to update replicated data

Ordering is Expensive

7

client1

leader

log

store

followers

store

store
client2

log

log

Several steps to update replicated data

durability: update will not be lost once majority ack

Ordering is Expensive

7

client1

leader

log

store

followers

store

store
client2

log

log

Several steps to update replicated data

durability: update will not be lost once majority ack

ordering: update order agreed upon by replicas

Ordering is Expensive

7

client1

leader

log

store

followers

store

store
client2

log

log

Several steps to update replicated data

durability: update will not be lost once majority ack

ordering: update order agreed upon by replicas

execution: apply updates to store

Ordering is Expensive

7

client1

leader

log

store

followers

store

store
client2

log

log

Several steps to update replicated data

durability: update will not be lost once majority ack

ordering: update order agreed upon by replicas

execution: apply updates to store

Ordering is Expensive

7

client1

leader

log

store

followers

store

store
client2

log

log

1 RTT 1 RTT

Several steps to update replicated data

durability: update will not be lost once majority ack

ordering: update order agreed upon by replicas

execution: apply updates to store

Network roundtrips critical for

application performance

Multi round-trip agreement

Introduction

Strongly consistent storage background

Nilext-aware replication

Evaluation

Outline

Nilext Interfaces

A nil-externalizing or nilext interface
may modify state in any way: blind write, or read-modify-write

does not externalize storage-system state
does not return an execution result or an execution error

usually returns an ack

Example: Put interface in KV API

does not return execution result (only an ack)

does not return execution error (e.g., by checking if key is already present)

18

Nilext Interfaces are Prevalent
All updates are nilext in key-value stores (e.g., RocksDB, LevelDB) built
upon write-optimized structures such as LSM and Be-trees

19

Put,

Write(multi-put)
Yes No error if key(s) already present

Delete Yes No error if key absent – insert tombstone

Merge (RMW) Yes
Not applied immediately – insert message

specifying how to modify value

Get No Returns value or error

Interface Nilext?

Some systems have a mix of nilext and non-nilext interfaces (e.g., Memcached)

Real-world traces show most updates are nilext
90% updates are nilext in 80% clusters (Twemcache production traces)

more analysis in the paper …

avoid query before

update
[Bender et al., 2015]

20

Exploiting Nil-Externality for Replication: Insights

Problem: coordination for ordering incurs multiple RTTs

store store store

20

Exploiting Nil-Externality for Replication: Insights

Durability without coordination

Problem: coordination for ordering incurs multiple RTTs

1

store store store

20

Exploiting Nil-Externality for Replication: Insights

Durability without coordination
clients send directly to replicas

Problem: coordination for ordering incurs multiple RTTs

1

store

X= X=

store store

20

Exploiting Nil-Externality for Replication: Insights

Durability without coordination
clients send directly to replicas

Problem: coordination for ordering incurs multiple RTTs

1

store

X= X=

store store

20

Exploiting Nil-Externality for Replication: Insights

Durability without coordination
clients send directly to replicas

Problem: coordination for ordering incurs multiple RTTs

1

store

X= X=

store store

20

Exploiting Nil-Externality for Replication: Insights

Durability without coordination
clients send directly to replicas

Defer ordering (and execution) if nilext

Problem: coordination for ordering incurs multiple RTTs

1

store

X= X=

store store

2

20

Exploiting Nil-Externality for Replication: Insights

Durability without coordination
clients send directly to replicas

Defer ordering (and execution) if nilext
nilext update does not externalize state

defer nilext update → 1 RTT completion

Problem: coordination for ordering incurs multiple RTTs

1

store

X= X=

store store

2

20

Exploiting Nil-Externality for Replication: Insights

Durability without coordination
clients send directly to replicas

Defer ordering (and execution) if nilext
nilext update does not externalize state

defer nilext update → 1 RTT completion

Problem: coordination for ordering incurs multiple RTTs

1

store

X= X=

store store

2

20

Exploiting Nil-Externality for Replication: Insights

Durability without coordination
clients send directly to replicas

Defer ordering (and execution) if nilext
nilext update does not externalize state

defer nilext update → 1 RTT completion

Non-nilext operations externalize state

Problem: coordination for ordering incurs multiple RTTs

1

store store store

2

3

20

Exploiting Nil-Externality for Replication: Insights

Durability without coordination
clients send directly to replicas

Defer ordering (and execution) if nilext
nilext update does not externalize state

defer nilext update → 1 RTT completion

Non-nilext operations externalize state

Problem: coordination for ordering incurs multiple RTTs

1

store store store

2

3

read

20

Exploiting Nil-Externality for Replication: Insights

Durability without coordination
clients send directly to replicas

Defer ordering (and execution) if nilext
nilext update does not externalize state

defer nilext update → 1 RTT completion

Non-nilext operations externalize state
enforce ordering and execution before state

is externalized → strong consistency

Problem: coordination for ordering incurs multiple RTTs

1

store store store

2

3

read

20

Exploiting Nil-Externality for Replication: Insights

Durability without coordination
clients send directly to replicas

Defer ordering (and execution) if nilext
nilext update does not externalize state

defer nilext update → 1 RTT completion

Non-nilext operations externalize state
enforce ordering and execution before state

is externalized → strong consistency

Problem: coordination for ordering incurs multiple RTTs

1

store store store

2

3

read

20

Exploiting Nil-Externality for Replication: Insights

Durability without coordination
clients send directly to replicas

Defer ordering (and execution) if nilext
nilext update does not externalize state

defer nilext update → 1 RTT completion

Non-nilext operations externalize state
enforce ordering and execution before state

is externalized → strong consistency

Problem: coordination for ordering incurs multiple RTTs

1

store store store

2

3

read

20

Exploiting Nil-Externality for Replication: Insights

Durability without coordination
clients send directly to replicas

Defer ordering (and execution) if nilext
nilext update does not externalize state

defer nilext update → 1 RTT completion

Non-nilext operations externalize state
enforce ordering and execution before state

is externalized → strong consistency

Problem: coordination for ordering incurs multiple RTTs

1

store store store

2

3

read

20

Exploiting Nil-Externality for Replication: Insights

Durability without coordination
clients send directly to replicas

Defer ordering (and execution) if nilext
nilext update does not externalize state

defer nilext update → 1 RTT completion

Non-nilext operations externalize state
enforce ordering and execution before state

is externalized → strong consistency

order and execute in the background

common case: updates already executed

Problem: coordination for ordering incurs multiple RTTs

1

store store store

2

3

20

Exploiting Nil-Externality for Replication: Insights

Durability without coordination
clients send directly to replicas

Defer ordering (and execution) if nilext
nilext update does not externalize state

defer nilext update → 1 RTT completion

Non-nilext operations externalize state
enforce ordering and execution before state

is externalized → strong consistency

order and execute in the background

common case: updates already executed

Problem: coordination for ordering incurs multiple RTTs

1

store store store

2

3

read

20

Exploiting Nil-Externality for Replication: Insights

Durability without coordination
clients send directly to replicas

Defer ordering (and execution) if nilext
nilext update does not externalize state

defer nilext update → 1 RTT completion

Non-nilext operations externalize state
enforce ordering and execution before state

is externalized → strong consistency

order and execute in the background

common case: updates already executed

Problem: coordination for ordering incurs multiple RTTs

1

store store store

2

3

read

37

Deferring Work in Other Contexts

Defer work until observed has proven beneficial in other contexts
programming languages [Henderson and Morris, 1976] [Friedman and Wise, 1976]

file systems [Nightingale et al., 2006]

databases [Faleiro et al., 2014]

Our work:
applies this general idea in the context of replication

identifies an interface-level property in storage systems that enables deferring work

Skyros

Skyros is a new nilext-aware replication protocol

Based on viewstamped replication (VR) [Oki and Liskov, 1988] [Liskov and Cowling, 2012]

leader based

provides linearizability

available when majority replicas alive

38

Leader

Followers

Client

Skyros Overview

39

Nilext updates: clients write to replicas directly and make durable in 1 RTT

Leader

Followers

nilext write
Client

Skyros Overview

39

Nilext updates: clients write to replicas directly and make durable in 1 RTT

leader orders and executes in background

Leader

Followers

nilext write
Client

background

ordering &

execution

Skyros Overview

39

Nilext updates: clients write to replicas directly and make durable in 1 RTT

leader orders and executes in background

Reads: at leader; mostly 1 RTT

Leader

Followers

nilext write
Client

background

ordering &

execution

read (fast)

Skyros Overview

39

Nilext updates: clients write to replicas directly and make durable in 1 RTT

leader orders and executes in background

Reads: at leader; mostly 1 RTT

Leader

Followers

nilext write
Client

background

ordering &

execution

read (fast)

Skyros Overview

39

no pending

write

Nilext updates: clients write to replicas directly and make durable in 1 RTT

leader orders and executes in background

Reads: at leader; mostly 1 RTT

Leader

Followers

nilext write
Client

background

ordering &

execution

read (fast)

Skyros Overview

39

no pending

write

Nilext updates: clients write to replicas directly and make durable in 1 RTT

leader orders and executes in background

Reads: at leader; mostly 1 RTT

Leader

Followers

nilext write
Client

1 RTT operations

background

ordering &

execution

read (fast)

Skyros Overview

39

no pending

write

Nilext updates: clients write to replicas directly and make durable in 1 RTT

leader orders and executes in background

Reads: at leader; mostly 1 RTT
sometimes 2 RTTs (when they read not-yet ordered updates)

Leader

Followers

nilext write
Client

1 RTT operations

background

ordering &

execution

read (fast)
read (slow)

Skyros Overview

39

no pending

write

Nilext updates: clients write to replicas directly and make durable in 1 RTT

leader orders and executes in background

Reads: at leader; mostly 1 RTT
sometimes 2 RTTs (when they read not-yet ordered updates)

Leader

Followers

nilext write
Client

1 RTT operations

background

ordering &

execution

read (fast)
read (slow)

Skyros Overview

39

no pending

write

pending

write

Nilext updates: clients write to replicas directly and make durable in 1 RTT

leader orders and executes in background

Reads: at leader; mostly 1 RTT
sometimes 2 RTTs (when they read not-yet ordered updates)

Leader

Followers

nilext write
Client

1 RTT operations

background

ordering &

execution

read (fast)
read (slow)

order &

execute

Skyros Overview

39

no pending

write

pending

write

Nilext updates: clients write to replicas directly and make durable in 1 RTT

leader orders and executes in background

Reads: at leader; mostly 1 RTT
sometimes 2 RTTs (when they read not-yet ordered updates)

Leader

Followers

nilext write
Client

1 RTT operations

background

ordering &

execution

read (fast)
read (slow)

order &

execute

Skyros Overview

39

no pending

write

pending

write

Nilext updates: clients write to replicas directly and make durable in 1 RTT

leader orders and executes in background

Reads: at leader; mostly 1 RTT
sometimes 2 RTTs (when they read not-yet ordered updates)

Non-nilext updates: expose state; so, synchronously order

Leader

Followers

nilext write
Client

1 RTT operations

background

ordering &

execution

read (fast)
read (slow)

order &

execute

non-nilext write

Skyros Overview

39

no pending

write

pending

write

Nilext updates: clients write to replicas directly and make durable in 1 RTT

leader orders and executes in background

Reads: at leader; mostly 1 RTT
sometimes 2 RTTs (when they read not-yet ordered updates)

Non-nilext updates: expose state; so, synchronously order

Leader

Followers

nilext write
Client

1 RTT operations

background

ordering &

execution

read (fast)
read (slow)

order &

execute

non-nilext write

2 RTT operations

Skyros Overview

39

no pending

write

pending

write

Nilext updates: clients write to replicas directly and make durable in 1 RTT

leader orders and executes in background

Reads: at leader; mostly 1 RTT
sometimes 2 RTTs (when they read not-yet ordered updates)

Non-nilext updates: expose state; so, synchronously order

Leader

Followers

nilext write
Client

1 RTT operations

background

ordering &

execution

read (fast)
read (slow)

order &

execute

non-nilext write

2 RTT operations

Skyros Overview

39Real-world traces show fast case is common

no pending

write

pending

write

Skyros Design

Skyros uses several techniques in its design

durability log and supermajority quorums to complete nilext writes in one RTT

ordering-and-execution check to serve reads mostly in one RTT

DAG-based order-resolution to reconstruct linearizable order during view changes

a variant that exploits commutativity [Lamport, 2004] in addition to nil-externality to
quickly commit non-nilext updates

Please see paper …

53

Introduction

Strongly consistent storage background

Nilext-aware replication

Evaluation

Outline

What are the Benefits of Exploiting Nil-Externality?

55

Workload: nilext-only updates; vary number of clients

Compare Skyros with Paxos-nobatch and Paxos (with batching, default)

More in the paper …

Microbenchmarks varying many factors

outperforms Paxos in most cases

at extremes, performs as well as Paxos

Write-heavy YCSB workloads: up to 2x lower latencies

Read-heavy workloads: 70% lower p99 latency

Compare with Curp, a commutative protocol
[Park and Ousterhout, 2019]

2.7x lower p99 latency for write-only workloadSignificant reduction in latency over
Paxos w/ batching

0

200

400

600

800

0 50 100

Paxos-nobatch Paxos Skyros

Throughput (Kops/s)

L
at

e
n
cy

 (
u
s)

~3x ↓

Concluding Thoughts

We identify nil-externality, a property prevalent in storage systems

Skyros, a new replication protocol

defers coordination until state is externalized

improves performance for a range of workloads while providing linearizability

Paying attention to what is observable to external clients is key

Useful to exploit properties of an underlying layer

Thank you!

56

Aishwarya Ganesan (aishwaryag@vmware.com) & Ramnatthan Alagappan (ralagappan@vmware.com)

are on the academic job market this year

mailto:aishwaryag@vmware.com
mailto:ralagappan@vmware.com

