Consistency-Aware Durability

By

Aishwarya Ganesan

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN-MADISON

2020

Date of final oral examination: October 2, 2020

The dissertation is approved by the following members of the Final Oral
Committee:

Andrea C. Arpaci-Dusseau, Professor, Computer Sciences

Remzi H. Arpaci-Dusseau, Professor, Computer Sciences

Aditya Akella, Professor, Computer Sciences

Michael M. Swift, Professor, Computer Sciences

Matthew D. Sinclair, Assistant Professor, Computer Sciences and

Affiliate, Electrical & Computer Engineering



All Rights Reserved

© Copyright by Aishwarya Ganesan 2020



Dedicated to my wonderful family

for their endless love, support, and encouragement



ii

Acknowledgments

Many people have been instrumental to my successful completion of PhD.
Many have guided, supported, and encouraged me before and through-
out graduate school. In this section, I would like to express my heartfelt
gratitude to them.

First and foremost, I would like to extend my deepest gratitude to my
advisors, Andrea Arpaci-Dusseau and Remzi Arpaci-Dusseau. This PhD
would not have been possible without their unwavering guidance and
support during these five years of grad school. Andrea and Remzi made
my PhD journey thoroughly enjoyable, inspiring me to pursue a career
in research. Their weekly meetings are something I looked forward to
each week. Not only these meetings gave me enough traction to complete
projects on time but were also fun, mainly due to their enthusiasm for my
work and partly due to their sense of humor.

Most of what I know about research, I have learned from Andrea and
Remzi. Among other things, from Andrea, I learned how to organize my
ideas when writing a paper. Her detailed and meticulous feedback on
all the drafts that I have written has helped me become better at writing.
Remzi taught me how to conduct experiments and present results. His
emphasis on measuring one level deeper has helped me become a better
researcher. Through their feedback on the various talks I gave, I learned

how to present my work to others. I have also learned indirectly from



iii

them; reading their book taught me a great deal about both operating
systems and writing.

Andrea and Remzi care deeply about the growth of their students.
Throughout my PhD, they helped me in many ways to become a better
and independent researcher. They gave me the freedom to pick problems
that I found interesting, encouraged me to apply for fellowships, created
opportunities for me to mentor students, and finally, provided me with a
chance to teach a graduate-level systems course. I am also very grateful
to Andrea and Remzi for always being interested in my well-being, espe-
cially for their support during my pregnancy and postpartum. I honestly
could not have asked for better advisors. Thank you, Andrea and Remzi!

I would like to express my deepest appreciation to my committee —
Aditya Akella, Michael Swift, and Matthew Sinclair. I am grateful for
their invaluable insights and suggestions for my research. I would also
like to thank them for their interesting questions during the final defense.
I would like to thank Mike for his detailed feedback on my dissertation
and proposal drafts, which helped in improving this thesis to a great ex-
tent. I very much appreciate Mike and Aditya for writing letters of rec-
ommendation for me.

I am fortunate to have worked with a great set of colleagues at UW
Madison —Ramnatthan Alagappan, Samer Al-Kiswany, Leo Prasath Arul-
raj, Youmin Chen, Yifan Dai, Tyler Harter, Jun He, Sudarsun Kannan, Jing
Liu, Yuvraj Patel, Neil Perry, Thanumalayan Pillai, Anthony Rebello, Zev
Weiss, Kan Wu, Yien Xu, and Suli Yang. I would also like to thank them
for their insightful feedback on my research during the various group
meetings and all the exciting and fun hallway discussions. I have been
fortunate to collaborate with others at UW Madison and elsewhere whom
I would like to thank. I had great pleasure of working with Aws Al-
barghouthi and Vijay Chidambaram on one of the projects. I have sig-

nificantly benefited from my internship at Microsoft Research working



iv

with my mentor Anirudh Badam. I also enjoyed working with Iyswarya
Narayanan during my internship; discussions with her were immensely
helpful.

Many others have helped me either directly or indirectly during my
PhD. I would like to take this opportunity to express my appreciation to
all of the CS staff and CSL for their help and support. Angela Thorp has
been extremely helpful on numerous occasions, and I enjoyed working
with her during GHC. I would also like to thank CloudLab for providing a
great environment to run experiments. I would like to thank the Facebook
fellowship program for generously supporting the last year of my PhD.

I am deeply thankful to my mentors at Microsoft Research India dur-
ing the years before starting my PhD — Krishna Chintalapudi and Venkat
Padmanabhan. I would not have applied to a PhD program if not for the
unique research experience at MSR. I learned a great deal about research
from Krishna and Venkat. I am incredibly grateful to them for their guid-
ance and mentorship.

I would also like to extend my sincerest thanks to my friends in Madi-
son. I would like to thank Lalitha for our fun times in Madison during my
initial years of PhD and her support beyond. Numerous meetings and
dinners with Harshad Deshmukh, Adalbert Gerald, Supriya Hirurkar,
Rogers Jeffrey, Kaviya Lakshmipathy, and Meenakshi Syamkumar made
my stay in Madison a fun-filled and memorable one. I am thankful for
their friendship and support.

I cannot begin to express my thanks to my wonderful family, who have
always been there for me, encouraged, and supported me throughout
my life. I am immensely grateful to my extended family — my grandpar-
ents, aunts, uncles, and cousins. They have constantly cheered for me and
taken pride in the smallest of my achievements. I am extremely lucky and
fortunate to have their unparalleled support. I would also like to thank
my parents-in-law, Leks Anna, Abi, and Thiru for their constant encour-



agement, support, and love. My mother-in-law has inspired me and re-
assured me on numerous occasions. I am highly indebted to Balamiss for
her continuous support and encouraging me to always aim high.

I do not have enough words to thank my parents and sister for their
unconditional love and boundless support. They have supported me ev-
ery step of the way and encouraged me to pursue my passion. My parents
nurtured my curiosity and instilled in me the critical values required in
life. My mom managed to complete her graduate studies while being
pregnant, which had motivated me many times in life, especially when
I myself had a baby during my PhD. My mom stayed with me in Madi-
son for several months taking care of my daughter while I was working
on my research. For that and several other reasons, I am incredibly in-
debted to my mom. My dad has always been an inspiration to me. His
hard work and dedication continue to motivate me. How he managed
to grow to the highest ranks in his career almost starting from nothing
amazes me. It is incredible how much my success and happiness mean to
my younger sister, Akshaya. She has been a constant source of strength in
my life. Without their relentless support, this PhD would not have been
possible. Thank you, amma, appa, and Akshaya!

I would like to thank Aira, my wonderful daughter, for bringing me
so much joy during the last year of PhD. You are a constant ray of light
during all the hard times this year. Thank you for being kind and not
being a difficult child.

Finally, one person that deserves my special thanks in many categories
of this section is Ram —my partner, friend, mentor, and collaborator. More
than eleven years ago when I was an undergraduate student in India,
I worked on a project with Ram. Little did I know that years later, we
would be married, have a kid together, and still be working on projects
together. Ram is the person I go to for discussing my research ideas; our

countless discussion sessions led to many of the ideas in this dissertation.



Vi

He is the first one to give feedback on my presentations and writing. His
persistence, hard work, and attention to detail continue to amaze me. 1
am fortunate to have worked with Ram on the papers that form this dis-
sertation, have co-taught a course with him at UW Madison, and above
all, share the ups and downs of life and career with him. It would be
an understatement to say that I would not have gotten through this PhD

journey without him. Thank you, Ram!



vii

Contents
Acknowledgments ii
Contents vii
List of Tables xii
List of Figures Xiv
Abstract XX
1 Introduction 1
1.1 Analysis of Modern Distributed Storage Systems . . . . . . 3
1.2 Building a Stronger and Efficient Durability Primitive . . . 7

1.3 Building Strong Consistency upon Consistency-aware Dura-
bility . ... 9
14 Contributions . ... ... ... .. ... ... ... 11
1.5 Overview . . . . ... ... L 13
2 Background 15
2.1 Distributed Storage Systems . . . . ... ... .. ... ... 15
2.2 Faults in Distributed Systems . . . ... ... ... ... .. 17
221 PFail-stopFailures . .. ................. 17

222 ByzantineFaults. . ... ............. ... 18



viii

223 StorageFaults . ... ... ... ... ... . ... .. 18
2.3 Leader-based Majority Systems . . . ... ... ....... 21
24 ConsistencyModels . . . .. ............... ... 23
241 Strong Consistency . . ... ... ........... 23
242 WeakerModels . ... ................. 24
25 Summary . . ... 25

Analysis of Distributed Systems Reactions to Storage Faults 26

31 FaultModel ... ......... ... . ... ... . ..... 28
32 Methodology . . . . .... ... ... ... .. ... 31
321 System Workloads . ... ............... 31
322 FaultInjection . ... ... .. .. .. ... ...... 31
3.2.3 Behavior Inference . ... ... ... ... ... ... 34
3.3 System Behavior Analysis . . ... .............. 35
331 Redis . ... ... .. ... .. ... 36
332 ZooKeeper . .. .. ... ... ... .. . ..., 41
333 Cassandra . ....................... 45
334 Kafka . ... ... .o oo 50
335 RethinkDB . . ... ................... 55
336 MongoDB . ............. ... ..., 58
337 LogCabin. ... ..................... 60
33.8 CockroachDB . ... .................. 63
3.4 Observations across Systems . . . . ... ... ........ 65
3.4.1 Systems employ diverse data integrity strategies . . 65
3.4.2 Faults are often undetected . . ... ... ... ... 67
3.4.3 Crashing is the most common reaction . . . . . . .. 67
3.44 Redundancy is underutilized . ... ... ... ... 68
3.45 Crash and corruption handling are entangled . . . . 70

3.4.6 Local fault handling and global protocols interact in
unsafeways . ... ... ... L 74
347 ResultsSummary . ... ... ... ... ...... 76



3.5 File System Implications . . . ... ... ...........
3.6 Developer Interaction . . . . ... ...............
3.7 DISCuSSion . . . . . . o e e

3.8 Summary and Conclusions . . . . . ... ... ........

Building a Stronger and Efficient Durability Primitive
41 DurabilityModels . . . ... ....... ... ... ... ..
411 Immediate Durability. . ... ... ..........
41.2 Eventual Durability . . . . ... ............
41.3 Consistency and Durability . . ... ... ... ...
4.2 Consistency-aware Durability: A New Durability Primitive
43 CADDesign . ... ... ... ... ... . . ...
43.1 Leader-based Majority Systems . . . . ... ... ..
43.2 Failure Model and Guarantees . ... ... ... ..
433 UpdatePath .. ... ... ... ... ..........
434 State Durability Guarantee . . . . . .. ... ... ..
4.3.5 Handling Reads: Durability Check . . . .. ... ..
43.6 Read-triggered Durability . . . ... .........
437 Correctness . . .. .. ... .. ...
44 Implementation . .. ......................
45 Evaluation . ...... ... ... oo
451 Write-only Micro-benchmark . ... ... ... ...
452 YCSBMacro-benchmarks . ... ... ........
453 Durability Guarantees . . .. ... ..........
454 Summary. . ... ... ... 0oL
4.6 Implementing CapinRedis . ... ... ........ ...
46.1 RedisOverview . .. ... ... ............
4.6.2 Redis Implementation . ... .............
463 Performance . ... ... ... ... ... ... ...
47 Discussion . .. ... ... ...
4.8 Summary and Conclusions . . . . . ... ... ........

ix

77
78
79
80



5 Building Strong Consistency upon Consistency-aware Dura-

bility 119
51 Consistency vs. Performance . . . . . ... ... ... .... 120
5.2 Stronger and Efficient Consistency with CAD . . . . . . .. 123
521 Cross-client Monotonic Reads and CAD . . . . . .. 124
5.2.2 Utility of Cross-client Monotonic Reads . . . . . . . 125
5.2.3 Need for Scalable Cross-client Monotonic Reads . . 127
53 ORCADesign . . ........ .. ... . . ...... 127
531 Guarantees . . . ... .. ... ... .. ... ... .. 127

5.3.2 Cross-Client Monotonic Reads with Leader Restric-
tion . ... .. ... o 129
5.3.3 Scalable Reads with ActiveSet . . . ... ... ... 130
53.4 Active Set Membership using Leases . . . . . . . .. 131
535 Correctness . ... ... ... ... L. 134
53.6 Implementation . ... ... ..... ... ...... 135
54 Evaluation . .............. . ... . ... . ..., 136
54.1 Read-only Micro-benchmark . ... ... ... ... 136
5.4.2 YCSB Macro-benchmarks . . ... .......... 137
54.3 Performance in Geo-Replicated Settings . . . . . .. 139
544 ORCAConsistency . . ................. 142
5.5 Application Case Studies . . . . . ... ............ 144
5.6 Summary and Conclusions . . . . .. .. .. ... ... ... 146
6 Related Work 148
6.1 Corruption and Errors in Storage Stack . . . . . . ... ... 148
6.2 Storage Fault Injection . . ... .. ... ... ..... ... 149
6.2.1 File-system Studies . . . ... ... ... ... ... 149
6.2.2 Studies on Layers Above the File System . . . . . . . 150
6.3 Analyzing Distributed System Reliability . ... ... ... 151
6.3.1 Model Checkers and Bug Finding Tools . . . .. .. 151

6.3.2 Generic FaultInjection . . .. ... ... ....... 152



6.3.3 BugStudies . ... ........ .. ... ... ...
6.4 Durability Semantics . . . ... ... .. ... ... ... ..

6.5 Cross-client MonotonicReads . . . . ... ... ... ....

6.6 Improving Distributed System Performance . . . . . . . ..

7 Conclusions and Future Work

7.1 Summary . . .

7.1.1 Storage Faults Analysis . . . . ... ... ... ....

7.1.2 Consistency-aware Durability . . . . ... ... ...

7.1.3 Cross-client MonotonicReads . . . . . ... ... ..

72 LessonsLearned . . . . . . . . . . .. ... ...

7.3 Future Work .

7.3.1 Storage Faults in Blockchain Systems . . . . . . . ..
7.3.2 Cabfor OtherSystems . . ... ............
7.3.3 Transactions upon Cabpand Orca . . . ... .. ...

734 CachingonCapandOrca . .. ... .........

7.3.5 Active sets and Linearizability . . . . ... ... ...

74 Closing Words

Bibliography

Xi

152
153
154
156

157
158
158
159
161
161
163
164
164
166
167
168
168

171



3.1

3.2

3.3

34

3.5

4.1

Xii

List of Tables

Possible Faults and Example Causes. The table shows storage
faults captured by our model and example root causes that lead to a partic-
ular fault during read and write operations. . . . . . . . ... ... ..
Data Integrity Strategies. The table shows techniques employed by
modern systems to ensure data integrity of user-level application data.
Scope Affected. The table shows the scope of data (third column) that
becomes lost or inaccessible when only a small portion of data (first column)
isfaulty. . . . . . e
Outcomes Summary. The table shows the summary of our results. It
shows the catastrophic outcomes caused by a single storage fault across all
systems we studied. A cross mark for a system denotes that we encountered
at least one instance of the outcome specified on the left. . . . . . . . . ..
Observations Summary. The table shows the summary of funda-
mental problems observed across all systems. A cross mark for a system
denotes that we observed at least one instance of the fundamental problem

mentioned on theleft. . . . . . . ... ... oo

Immediate Durability Costs. The table shows the overheads of syn-
chronous operations in Redis. The arrows show the throughput drop com-

pared to the fully asynchronous configuration. . . . . . . . . ... ...

66

85



Xiii

4.2 Durability. The table shows the durability-experiment results for the
three durability models. . . . . . . . . ... ... ... .. . ..., 110

5.1 Orca Correctness. The tables show how ORrca provides cross-client
monotonic reads. In (a), weak-ZK and ORca use asynchronous persistence;
in (b), both replication and persistence are asynchronous. . . . . . . . . . 143
5.2 Case Study: Location-tracking and Retwis. The table shows how
applications can see inconsistent (non-monotonic), and consistent (old or
latest) states with weak-ZK, strong-ZK, and Orca. . . . . . . . . . . .. 145



3.1

3.2

3.3

34

Xiv

List of Figures

Corps Methodology. The figure shows an overview of our methodol-
ogy to study how distributed systems react to local storage faults. . . . . .
Errfs and Behavior Inference. The figure illustrates how errfs in-
jects faults (corruptions and errors) into a block and how we observe the
local behavior and the global effect of the injected fault. . . . . . . . . ..
Redis On-disk Structures. The figure shows the on-disk format of
the files and the logical data structures of Redis. The logical structures take
the following form: file_name.logical_entity. If a file can be contained in a
single file-system block, we do not show the logical entity name. . . . . . .
Redis Behavior: Block Corruptions and Errors.  The figure
shows system behavior when corruptions (corrupted with either junk or
zeros), read errors, write errors, and space errors are injected in various
on-disk structures in Redis. Within each system workload (read and up-
date), there are two boxes — first, local behavior of the node where the fault
is injected and second, cluster-wide global effect of the injected fault. The
rightmost annotation shows the on-disk logical structure in which the fault
is injected. Annotations on the bottom show where a particular fault is
injected (L — leader, F — follower). A gray box indicates that the fault is
not applicable for that logical structure. For example, write errors are not
applicable for any data structures in the read workload (since they are not

written) and hence shown as gray boxes. . . . . . . . . . . .. ... ..

33



3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

Redis Corruption Propagation.  The figure depicts how the re-
synchronization protocol in Redis propagates corrupted user data in ap-
pendonly file (aof) from the leader to the followers, leading to a global user-
visible corruption. Time flows downwards as shown on the left. The black
portions denote corruption. . . . . ... ..o
Redis Behavior: Bit Corruptions. The figure shows the behavior
when bit corruptions are injected. For bit corruptions, we flip a single bit
in a field within the on-disk structure. For example, appendonlyfile.db_num
is part of appendonlyfile.metadata. . . . . . . .. ...
ZooKeeper On-disk Structures. The figure shows the on-disk for-
mat of the files and the logical data structures of ZooKeeper. . . . . . . . .
ZooKeeper Behavior. The figure shows system behavior when faults
are injected in various structures in ZooKeeper. . . . . . . . . ... ..
ZooKeeper Write Unavailability. The figure shows how write er-
rors lead to unavailability in ZooKeeper. . . . . . . . . . ... ... ..
Cassandra On-disk Structures. The figure shows the on-disk format
of the files and the logical data structures of Cassandra. . . . . . . . . ..
Cassandra Behavior: Block Corruptions and Errors. (a) and
(b) show system behavior in the presence of block corruptions (corrupted
with either junk (cj) or zeros(cz)), read errors (re), write errors (we), and
space errors (se) when sstable compression is turned off and turned on, re-
spectively. . . . .. .. L e
Cassandra Corruption Propagation. The figure shows how the
read-repair protocol in Cassandra propagates corrupted user data in a sstable
file from a corrupted replica to other intact replicas. . . . . . . . . . ...
Cassandra Behavior: Bit Corruptions. The figure shows the be-
havior in the presence of bit corruptions when sstable compression is off; the
annotations on the bottom indicate the read quorum (R1 - quorum of 1, R3

SqUOTUM Of 3). . . . o e e e

XV

42

44



3.14 Kafka On-disk Structures. The figure shows the on-disk format of
the files and the logical data structures in Kafka. . . . . . . . . ... ..
3.15 Kafka Behavior: Block Corruptions and Errors. The figure

shows system behavior in the presence of block corruptions and block errors.

3.16 Kafka Data Loss and Write Unavailability. The figure shows the
scenario where Kafka loses data and becomes unavailable for writes due to
ACOTTUPLION. .« . . o v v i i e e e e e e e e e

3.17 Kafka Behavior: Bit Corruptions. The figure shows system behav-
ior when bit corruptions are injected during a read workload. . . . . . . .

3.18 RethinkDB On-disk Structures. The figure shows the on-disk for-
mat of the files and the logical data structures in RethinkDB. . . . . . . .

3.19 RethinkDB Behavior. The figure shows system behavior when faults
are injected in various on-disk logical structures. . . . . . . . . . . . ..

3.20 RethinkDB Data Loss. The figure shows the scenario where Re-
thinkDB exhibits data loss due to a corruption. . . . . . . . . . .. ...

3.21 MongoDB On-disk Structures. The figure shows the on-disk format
of the files and the logical data structures in MongoDB. . . . . . . . ..

3.22 MongoDB Behavior.  The figure shows the system behavior when
faults are injected in various on-disk logical structures in MongoDB. . . .

3.23 LogCabin On-disk Structures. The fiqure shows the on-disk format
of the files and the logical data structures in LogCabin. . . . . . . . . ..

3.24 LogCabin Behavior. The figure shows system behavior when faults
are injected in various on-disk logical structures. . . . . . . . . . .. ..

3.25 CockroachDB On-disk Structures. The figure shows the on-disk
format of the files and the logical data structures in CockroachDB.

3.26 CockroachDB Behavior. The figure shows the system behavior when

faults are injected in various on-disk logical structures. . . . . . . . . ..

Xvi

51

52



3.27 Crash and corruption handling entanglement in Kafka. (1)

4.1

4.2

4.3

4.4

4.5

4.6

shows how a crash during an update causes a checksum mismatch; in this
case, the partially updated message is truncated. (b) shows the case where
Kafka treats a disk corruption as a signal of a crash and truncates committed

messages, leading toadataloss. . . . . . . .. ... ... ... ... .

Asynchronous Persistence. The figure shows how an arbitrary data
loss can occur upon failures with systems that persist asynchronously. Data
items shown in grey denote that they are persisted (in the background).
Asynchronous Replication and Asynchronous Persistence.
The figure shows how an arbitrary data loss can occur upon failures with
systems that replicate and persist asynchronously. . . . . . . . . . . ..
Cap Update Path. The figure shows the update path in Cap. Data
items that are durable are shown in grey boxes. In (i), the baseline performs
both replication and persistence asynchronously; in (ii), the baseline syn-
chronously replicates but persists lazily in the background. When a client
writes item b, the write is acknowledged before b is made durable similar to
the baselines. CAD then makes b durable in the background by replicating
and persisting b on other nodes asynchronously. . . . . . . . .. . ...
Cap Durability Check. The figure shows how Cap works. Data
items shown in grey are durable. In (i), the baseline is fully asynchronous;
in (ii), the baseline synchronously replicates but asynchronously persists.
At first, when item a is durable, read(a) passes the durability check. Items
b and c are not yet durable. The check for read(b) fails; hence, the leader
makes the state durable after which it servesb. . . . . . . . .. ... ..
Write-only Workload: Latency vs. Throughput.  The fig-
ure plots the average latency against throughput by varying the number
of clients for a write-only workload for different durability layers. . . . . .
YCSB Write Latencies. (a)(i) and (a)(ii) show the write latency dis-
tributions for the three durability layers for write-heavy YCSB workloads.
(b)(i) and (b)(ii) show the same for read-heavy YCSB workloads. . . . . .

Xvii

71

87



4.7

4.8

4.9

4.10

411

51

5.2

5.3

YCSB Read Latencies: Write-heavy workloads. (a) and (b)
show read latencies for eventual durability and Cap for write-heavy YCSB
workloads. The annotation within a close-up shows the percentage of reads
that trigger synchronous durability in Cap. . . . . . . . ... ... ..
YCSB Read Latencies: Read-heavy workloads. (a)and (b) show

read latencies for eventual durability and Cap for read-heavy YCSB work-

Overall Performance. The figure compares the throughput of the three
durability layers. In (a), eventual and Cap are fully asynchronous; in (b),
they replicate synchronously but persist lazily. The number on top of each
bar shows the factor of improvement over immediate durability. . . . . . .
An Example Failure Sequence. The figure shows an example se-
quence generated by our test framework. . . . . . ... ..o
Redis Performance. The figure compares the throughput of imme-
diate, eventual, and Cap durability layers in Redis. In (a), eventual and
Cap synchronously replicate but asynchronously persist; in (b), they repli-
cate and persist lazily. The number on top of each bar shows the performance

normalized to that of immediate durability. . . . . . . . . .. ... ...

Linearizability. The figure shows possible values clients can observe
upon reads in a linearizable system. The system has acknowledged updates
a1, ap, and az. Time flows from left toright. . . . . . . . .. ... ...
Causal Consistency. The figure shows possible values clients can ob-
serve upon reads in a causally consistent system. The system has acknowl-
edged updates a1, ap, and as; updates a; and ap are causally related. . . .
Cross-client Monotonic Reads. The figure shows possible values
clients can observe upon reads under our new consistency model. The sys-

tem has acknowledged updates a;, ap, and as. . . . . . . ... ... ..

Xviii

106

109

122

124



54

5.5

5.6

57

5.8

5.9

5.10

5.11

Orca Guarantees. The figure shows possible values clients can observe
upon reads with Orca. The system has acknowledged updates a1, by, ay,
and by. Once client; notices by, further reads must notice all updates upto
by, thus, a later read from client, to item a notices ap. . . . . . . . ..
Non-monotonic Reads. The figure shows how non-monotonic states
can be exposed atop Cap when reading at the followers. . . . . . . . ..
Active Set and Leases: Unsafe Removal of Follower. The
figure shows how if the leader removes a follower hastily then the system
can expose non-monotonic states. . . . . ... ..o 0oL
Active Set: Two-step Breaking of Lease. The figure shows how
ORca breaks leases in two steps. . . . . . . . ... ... ...
Orca Performance: Read-only Micro-benchmark. The fig-
ure plots the average latency against throughput by varying the number of
clients for a read-only workload for the three systems. . . . . . . . . . ..
Orca Performance. The figure compares the throughput of the three
systems across different YCSB workloads. In (a), weak-ZK and Orca asyn-
chronously replicate and persist; in (b), they replicate synchronously but
persist data lazily. The number on top of each bar shows the performance
normalized to that of strong-ZK. . . . . . . . .. ... .
Geo-distributed Experiment. The figure shows how the replicas
and clients are located across multiple data centers in the geo-distributed
experiment. . . . . . ... .o e e e
Geo-distributed Latencies. The figure shows the distribution of op-
eration latencies across different workloads in a geo-distributed setting. For
each workload, (i) shows the distribution of latencies for operations origi-
nating near the leader; (ii) shows the same for requests originating near the
followers. The ping latency between a client and its nearest replica is <2ms;

the same between the client and a replica over WAN is ~35ms. . . . . . .

Xix



XX

Abstract

Modern distributed storage systems are emerging as the primary choice
for storing massive amounts of critical data that we generate today. A cen-
tral goal of these systems is to ensure data durability, i.e., these systems
must keep user data safe under all scenarios.

To achieve high levels of durability, most modern systems store redun-
dant copies of data on many machines. When a client wishes to update
the data, the distributed system takes a set of actions to update these re-
dundant copies, which we refer to as the system’s durability model. At
one end of the durability model spectrum, data is immediately replicated
and persisted on many or all servers. While this immediate durability
model offers strong guarantees, it suffers from poor performance. At the
other end, data is only lazily replicated and persisted, eventually making
it durable; this approach provides excellent performance but poor dura-
bility guarantees.

The choice of durability model also influences what consistency mod-
els can be realized by the system. While immediate durability enables
strong consistency, only weaker models can be realized upon eventual
durability. Thus, in this dissertation, we seek to answer the following
question: is it possible for a durability model to enable strong consistency guar-
antees, yet also deliver high performance?

In the first part of this dissertation, we study the behavior of eight



XXi

popular modern distributed systems and analyze whether they ensure
data durability when the storage devices on the replicas fail partially, i.e.,
sometimes return corrupted data or errors. Our study reveals that re-
dundancy does not provide fault tolerance; a single storage fault can result in
catastrophic outcomes such as user-visible data loss, unavailability, and
spread of corruption.

In the second part, to address the fundamental tradeoff between con-
sistency and performance, we propose consistency-aware durability or Cap,
a new way to achieving durability in distributed systems. The key idea
behind Cab is to shift the point of durability from writes to reads. By de-
laying durability upon writes, Cap provides high performance; however,
by ensuring the durability of data before serving reads, Cap enables the
construction of strong consistency models.

Finally, we introduce cross-client monotonic reads, a novel and strong
consistency property that provides monotonic reads across failures and
sessions. We show that this property can be efficiently realized upon
Cab, while other durability models cannot enable this property with high
performance. We also demonstrate the benefits of this new consistency

model.



1

Introduction

Distributed storage systems are central to building modern services and
applications that run in today’s data centers. For instance, storage sys-
tems such as Cassandra, Redis, MongoDB, and ZooKeeper are at the heart

of many online services including Internet search, e-commerce, ride-sharing,
and social networking [47, 102, 133, 135, 173-175, 177].

A paramount goal of these storage systems is to ensure data durabil-
ity, i.e., the system must keep user data safe under all circumstances. If
a storage service loses data, the company loses its reputation and cus-
tomers, and potentially many millions of dollars [33, 160, 180]. For the
end-user, data loss is a nuisance at best and devastation at worst.

A common technique used by most distributed storage systems to pro-
vide high levels of durability is that of redundancy: instead of storing a sin-
gle copy, data is redundantly stored on several servers. Thus, even if a few
servers fail, data will not be lost and still can be accessed by applications.

Unfortunately, how a system updates the redundant copies (which we
refer to as the system’s durability model) presents an unsavory tradeoff be-
tween guarantees and performance. At one extreme lies the immediate
durability model in which the distributed system replicates and persists
a write on many replicas before acknowledging the clients. By replicat-
ing and persisting in the critical path, this model guarantees that data
will not be lost even when many or all nodes crash and recover. However,

such strong durability guarantees come at a high cost: poor performance.



Forcing writes to be replicated and persisted, even with performance en-
hancements such as batching, reduces throughput and increases latency
dramatically.

At the other extreme is eventual durability: a distributed system only
lazily replicates and persists a write, perhaps after buffering it in just one
node’s memory. By acknowledging writes quickly, high performance is
realized, but this model can arbitrarily lose data in the presence of fail-
ures, providing weak durability guarantees.

The choice of durability model, in addition to determining the safety
of data and performance, also influences another important aspect of a
distributed system — its consistency model. Consistency models describe
the guarantees a client has with regard to reads, given a set of previous
writes from that client or other clients. Many models have been proposed,
from (strong) linearizability at one end [70] to (weak) eventual consis-
tency at the other [52], with many points in between [91, 94, 96, 169, 170,
176]. Strong consistency usually hides the fact that multiple copies ex-
ist, thereby making it easier for applications and programmers to rea-
son about the system behavior. Strong consistency is often achieved by
employing immediate durability. For example, to prevent stale reads, a
linearizable system (such as LogCabin [92]) synchronously makes writes
durable; otherwise, an acknowledged update can be lost, exposing stale
values upon subsequent reads.

In contrast, systems that employ eventual durability (such as Redis [134])
can only realize only weak consistency models. These systems can arbi-
trarily lose data upon failures, exposing stale and out-of-order data, and
thus provide confusing semantics to applications.

Thus, distributed storage systems must choose between two unsavory
options: offer strong guarantees but pay a high performance cost, or de-
liver high performance but settle for weak guarantees. Most modern sys-

tems favor performance over correctness, and thus adopt eventual dura-



bility; in fact, eventual durability is the default in many widely used sys-
tems [104, 136, 137]. Consequently, these systems offer high performance
but only offer poor durability and consistency guarantees.

Thus, in this dissertation, we ask the following question. Is it possible
for a distributed system to provide strong durability and consistency while also
delivering high performance? We answer this question in the affirmative by
introducing consistency-aware durability or Cab, a new way of achieving
durability in distributed systems. The key idea behind Cab is to shift the
point of durability from writes to that of reads: data is guaranteed to be
durable before it is served upon reads. By delaying durability of writes,
Cap achieves high performance; however, unlike eventual durability that
can arbitrarily lose data, Cap guarantees that read data will never be lost
and thus enables strong consistency models.

This dissertation has three parts to it. In the first part, we study the
behavior of eight widely used modern distributed storage systems and
analyze whether these systems ensure data durability in the presence of
failures. We focus on the case where the disks on the replicas sometimes
return corrupted data or errors upon accesses (§1.1). Second, to address
the fundamental tradeoff between durability and consistency, and per-
formance, we introduce Cap (§1.2). We design and implement Cap for
leader-based majority systems and show its efficacy. Finally, we introduce
cross-client monotonic reads, a novel, strong consistency property that can
be realized efficiently upon Cap (§1.3). We also demonstrate the benefits
of this new consistency property.

1.1 Analysis of Modern Distributed Storage

Systems

Eachreplica in a distributed storage system depends upon its local storage
stack to store data. The local storage stack is immensely complex consist-



ing of storage devices, firmware, and many layers of software including
local file systems, device drivers, I/O schedulers, etc. Upon problems in
any of these layers, the storage stack can return corrupted data or errors to
file systems and applications above them [22, 24, 25,97, 112, 124, 155, 156].
We refer to such corruptions and errors as storage faults.

Previous studies [26, 130, 187] have shown how storage faults are han-
dled by local file systems such as ext3, NTFS, and ZFS. File systems, in
some cases, simply propagate the faults as-is to applications; for exam-
ple, ext4 returns corrupted data as-is to applications if the underlying
device block is corrupted. In other cases, file systems react to the fault
and transform it into a different one before passing onto applications; for
example, btrfs transforms an underlying block corruption into a read er-
ror. Thus, in either case, distributed storage systems can encounter faults
when running atop local file systems.

The behavior of modern distributed storage systems in response to
storage faults is critical and strongly affects cloud-based services. Despite
this importance, little is known about how distributed storage systems
react to storage faults and whether these systems preserve the durability
of data in the presence of storage faults.

A common and widespread expectation is that redundancy in higher
layers (i.e., across replicas) enables recovery from local storage faults [30,
50, 68, 82, 156]. For example, an inaccessible block of data in one node of
a distributed storage system would ideally not result in a user-visible data
loss because the same data is redundantly stored on many nodes. Given
this expectation, in the first part of the thesis, we answer the following
questions: How do modern distributed storage systems behave in the presence
of local storage faults? Do they use redundancy to recover from storage faults on
a single replica?

To answer these questions, we build a fault-injection framework called

Corps which includes the following key pieces: errfs, a user-level FUSE file



system that systematically injects storage faults, and errbench, a suite of
system-specific workloads that drives systems to interact with their local
storage. For each injected fault, Corbs automatically observes resultant
system behavior. We studied eight widely used systems using Corps: Re-
dis [134], ZooKeeper [16], Cassandra [13], Kafka [15], RethinkDB [143],
MongoDB [101], LogCabin [92], and CockroachDB [41].

The most important overarching lesson from our study is that redun-
dancy does not provide fault tolerance in many distributed storage sys-
tems: a single storage fault in only one of the replicas can induce catas-
trophic outcomes. Despite the presence of checksums, redundancy, and
other resiliency methods prevalent in distributed storage, a single fault
can lead to data loss, corruption, unavailability, and, in some cases, the
spread of corruption to other intact replicas. Because distributed storage
systems inherently store redundant copies of data, and we inject only one
fault at a time, these behaviors are surprising and undesirable.

The benefits of our systematic study are twofold. First, our study has
helped us uncover numerous bugs in eight widely used systems. We find
that these systems can silently return corrupted data to users, lose data,
propagate corrupted data to intact replicas, become unavailable, or return
an unexpected error on queries. For example, a single write error during
log initialization can cause write unavailability in ZooKeeper. Similarly,
corrupted data in one node in Redis and Cassandra can be propagated
to other intact replicas. In Kafka and RethinkDB, corruption in one node
can cause a user-visible data loss.

Second, more importantly, our study has enabled us to make several
observations across all systems concerning storage fault handling. We
find that while some of the above undesirable outcomes are caused due
to implementation-level bugs that could be fixed by moderate developer
effort, most of them arise due to a few fundamental root causes in stor-

age fault tolerance common to many distributed storage systems. We list



these root causes below.

¢ Faults are often undetected locally. While a few systems carefully
use checksums, others completely trust lower layers in the stack to
detect and handle corruption. Thus, we find that corruptions are
often locally undetected in some systems. We also find that I/O
errors are often not handled properly in many systems. More im-
portantly, we find that locally undetected faults lead to immediate

harmful global effects (e.g., spread of corruption).

* Crashing is the most common reaction. Even when systems reli-
ably detect faults, in most cases, they simply crash instead of using

redundancy to recover from the fault.

* Redundancy is underutilized. Although distributed storage sys-
tems replicate data and functionality across many nodes, a single
storage fault on a single node can result in harmful cluster-wide ef-
fects. Surprisingly, many distributed storage systems do not consis-

tently use redundancy as a source of recovery.

* Crash and corruption handling are entangled. Systems often con-
flate recovering from a crash with recovering from corruption, acci-
dentally invoking the wrong recovery subsystem to handle the fault.

This conflation ultimately leads to poor outcomes such as data loss.

* Local fault handling and global protocols interact in unsafe ways.
Local fault-handling behaviors and global distributed protocols such
as read repair, leader election, and re-synchronization, sometimes
interact in an unsafe manner. This unsafe interaction often leads to

propagation of corruption to intact replicas or data loss.

To summarize, our study indicates that storage faults can have adverse

effects on durability in most distributed storage systems: a single storage



fault can lead to loss of data, system unavailability, or spread of corrup-
tion. Most outcomes result due to a few fundamental problems concern-
ing storage fault tolerance prevalent across many systems. Finally, these
systems are not equipped to effectively use redundancy across replicas to

recover from local storage faults.

1.2 Building a Stronger and Efficient
Durability Primitive

In the second part of this thesis, we examine the fundamental tradeoff be-
tween strong guarantees and performance in distributed storage systems.
When a user wishes to store a piece of data, the distributed storage sys-
tem orchestrates a sequence of steps to make the data durable. We refer
to this set of actions a system takes as its durability model. In particular,
durability models describe how a distributed system replicates and per-
sists data across machines. A system’s underlying durability model has
strong implications on both consistency and performance.

As we noted earlier, at one end of the spectrum, immediate durability
synchronously persists data on many nodes, and thus offers strong guar-
antees; however, it is too slow. At the other end lies eventual durability
which only asynchronously persists data, thereby offering high perfor-
mance; however, it does so by trading off strong durability and consis-
tency.

As a result, practitioners are left with the unsavory decision of choos-
ing strong guarantees or performance but not both. Given the poor per-
formance of immediate durability, many deployments prefer eventual dura-
bility [74, 106, 125]. In fact, eventual durability is the default in many pop-
ular systems (e.g., Redis, MongoDB). Even when using systems that are
immediately durable by default (e.g., ZooKeeper), practitioners disable
synchronous operations for performance [55]. Therefore, these deploy-



ments and systems settle for weaker consistency and durability guaran-
tees.

Thus, we examine whether it is possible for a durability layer to enable
strong consistency, yet also deliver high performance. We first note that to
provide high performance, the system cannot employ synchronous writes
because it is simply too expensive. Second, we realize that what clients
observe upon reads is important for most consistency models. Based on
these two insights, we rethink the durability layer and propose consistency-
aware durability or Cap. The key idea behind Cab is to shift the point of
durability from writes to reads; data is replicated and persisted before it
is read. By delaying durability of writes, Cap achieves high performance.
However, by making data durable before it is read, Cap guarantees that
data that has been read by clients will never be lost and can be recovered
even after failures; this enables strong consistency across failures, as we
show in the next part of the thesis.

Cap does not incur overheads on every read; for many workloads,
data can be made durable in the background before applications read
it. While enabling strong consistency, Cap does not guarantee complete
freedom from data loss; a few recently written items that have not been
read yet may be lost if failures arise. However, given that many widely
used systems adopt eventual durability and thus settle for weaker consis-
tency [104, 136, 137], Cap offers a path for these systems to realize stronger
consistency and durability guarantees without compromising on perfor-
mance.

We implement Cap in ZooKeeper [16], a leader-based majority sys-
tem. Our experiments show that ZooKeeper with Cap is significantly
faster than immediately durable ZooKeeper (optimized with batching)
while approximating the performance of eventually durable ZooKeeper
for many workloads. Even for workloads that mostly read recently writ-

ten data, Cap’s overheads compared to eventually durable ZooKeeper are



small (only 8%). Through rigorous fault injection, we demonstrate the
robustness of Cap’s implementation in ZooKeeper; Cap ensures the dura-
bility of data that has been read by clients in hundreds of crash scenarios.
We also demonstrate that the consistency-aware durability idea applies
to other systems as well by implementing Cap in Redis; we also present a

performance evaluation of this implementation.

1.3 Building Strong Consistency upon

Consistency-aware Durability

In the last part of the thesis, we show how to realize strong consistency
upon consistency-aware durability (Cap). Linearizability is the strongest
guarantee that can be provided by a non-transactional distributed sys-
tem [70, 120]. A linearizable system never allows clients to read stale
data. Further, it prevents clients from seeing out-of-order states: the sys-
tem will not serve a client an updated state at one point and subsequently
serve an older state to any client. To provide such strong guarantees on
reads, a linearizable system must pay the cost of immediate durability
during write operations [87, 120]. In addition to using immediate dura-
bility, most linearizable systems restrict reads to the leader [80, 108, 119].
Such restriction limits read throughput and prevents clients from reading
from nearby replicas, increasing latency.

In contrast, models such as causal consistency, monotonic reads, and
eventual consistency perform well when compared to linearizability. These
models are often built upon a weakly durable substrate and allow reads
at many nodes. However, these models offer only weak guarantees. For
example, consider the above two consistency properties: clients can never
see stale or out-of-order data; systems that employ weaker models violate
these two properties.

We note that preventing staleness requires expensive immediate dura-



10

bility upon every write. However, preventing out-of-order states can be
useful in many scenarios and can be realized efficiently. The well-known
monotonic reads consistency model [169, 170] seemingly prevents out-
of-order states but is quite limited in this regard. In particular, while it
avoids out-of-order reads within a single client session, it does not guar-
antee in-order states across clients or even different sessions of the same
client application. In contrast, we introduce a new consistency model that
provides much stronger guarantees; we refer to this new model as cross-
client monotonic reads. Cross-client monotonic reads guarantees that a read
from a client will return a state that is at least as up-to-date as the state
returned to a previous read from any client, irrespective of failures and
across sessions. We show that this property can be realized with high
performance upon Cap. Without Cabp, it is hard (if not impossible) to re-
alize cross-client monotonicity efficiently. Specifically, immediate dura-
bility can enable it but is too slow; on the other hand, it simply cannot be
realized upon eventual durability. Among the existing consistency mod-
els, only linearizability provides cross-client monotonic reads, albeit, at
the cost of performance.

We design and build Orca by implementing cross-client monotonic
reads upon Cap in ZooKeeper. It is straightforward to provide cross-client
monotonicity upon Cap when restricting reads to the leader (which limits
read scalability). However, Orca offers cross-client monotonicity while al-
lowing reads at many replicas. To allow reads at many nodes while main-
taining monotonicity, Orca employs a lease-based active set technique
and a two-step lease-breaking mechanism to correctly manage active-set
membership. By permitting reads at many nodes, Orca achieves low-
latency reads by allowing clients to read from nearby replicas, making
it particularly well-suited for geo-distributed settings. Further, Orca can
be beneficial in edge-computing use cases, where a client may connect to

different servers over the application lifetime (e.g., due to mobility [132]),



11

but still can receive monotonic reads across these sessions.

We experimentally show that Orca offers significantly higher through-
put (1.8 = 3.3x) compared to strongly consistent ZooKeeper (strong-ZK).
In a geo-distributed setting, by allowing reads at nearby replicas, Orca
provides 14x lower latency than strong-ZK in many cases. Orca also
closely matches the performance of weakly consistent ZooKeeper (weak-
ZK). We show through rigorous tests that Orca provides cross-client mono-
tonic reads under hundreds of failure sequences generated by a fault-
injector; in contrast, weak-ZK returns non-monotonic states in many cases.
We also demonstrate how the guarantees provided by Orca can be useful
in two applications: social-media timeline and location-sharing.

1.4 Contributions
We list the main contributions of this dissertation.

* Corps Tool. We design and build Corbs, a fault-injection frame-
work to analyze how distributed systems react to storage faults. The
framework consists of a user-level FUSE file system to inject stor-
age faults into applications running upon local file systems, and a
suite of system-specific workloads. Our framework is publicly avail-
able [1].

* Vulnerabilities in Widely Used Systems. We present a detailed
behavioral study of eight widely used distributed systems on how
they react to storage faults and uncover many previously unknown
vulnerabilities in these systems. We have contacted developers of
seven systems and five of them have acknowledged the problems

we found. The vulnerabilities we reported can be found here [1].

¢ Fundamental Observations about Storage Fault Tolerance. We present

a set of fundamental problems in storage fault tolerance that are



12

common to many modern distributed systems. For instance, we
identify that many systems conflate corruptions that arise due to
system crashes and storage corruptions, leading to undesirable out-
comes such as data loss. Some of the lessons from this study have
proved instrumental to building replicated state machines that cor-
rectly recover from storage faults [10] (our follow-on work, not a part
of this thesis).

Durability Models. We analyze how many widely used distributed
storage systems make data durable upon writes. We identify the im-
mediate and eventual durability models popular in these systems.
We show how a distributed system’s underlying durability model

affects its consistency and performance characteristics.

Consistency-aware Durability. We design consistency-aware dura-
bility (Cap), a new durability model for distributed systems, that
shifts the point of durability from writes to reads, providing strong

guarantees and excellent performance.

Cross-client Monotonic Reads. We introduce cross-client mono-
tonic reads, a new consistency model that provides strong guaran-
tees without requiring expensive synchronous durability. Among
the existing consistency models, only linearizability provides cross-
client monotonicity; however, it is slow because it requires synchronous

durability.

Orca. We design and implement cross-client monotonic reads and
Cabp for leader-based majority systems in a system called Orca by
modifying ZooKeeper. We present a rigorous evaluation of Cap and

Orca. We also implement and evaluate Cap in Redis.



13

1.5 Overview

We briefly describe the contents of the different chapters in the disserta-

tion.

* Background. Chapter 2 provides background on distributed stor-
age systems and the common failure models. We then discuss leader-
based majority systems and different consistency models.

* Analysis of Distributed Systems Reactions to Storage Faults. Chap-
ter 3 presents our study on how eight widely used distributed stor-
age systems react to storage faults. We describe our fault-injection
methodology and present the behavior analysis of different systems.
We then present high-level observations related to storage fault tol-

erance that are common to systems we study.

* Building a Stronger and Efficient Durability Primitive. In Chapter
4, we analyze existing durability models and introduce consistency-
aware durability or Cap, a new durability primitive that delivers
high performance and facilitates construction of stronger consis-
tency guarantees. We then present the design, implementation, and

evaluation of Cab.

¢ Building Strong Consistency upon Consistency-aware Durability.
In Chapter 5, we build cross-client monotonic reads, a new consis-
tency model that provides strong guarantees and can be realized ef-
ficiently upon Cap. We describe Orca, our design for leader-based
systems. We then evaluate Orca and demonstrate Orca’s utility for

applications.

* Related Work. In Chapter 6, we discuss other research work and
systems that are related to this dissertation. We first discuss work
related to prevalence of storage faults, storage fault injection, and



14

studies on distributed systems reliability. We then compare our new
durability primitive and consistency model with existing work and
finally discuss other efforts to improving distributed system perfor-

mance.

Conclusions and Future Work. Chapter 7 summarizes this disser-
tation. We also present some lessons learned during the course of
this dissertation and discuss possible directions our work could be
extended.



15

2
Background

In this chapter, we provide a background on various topics relevant to
this dissertation. We start with a brief overview of distributed storage
systems (§2.1). Then, we discuss the various failures that are possible
in distributed systems (§2.2) with an emphasis on storage faults (§2.2.3).
We then briefly describe leader-based majority systems (§2.3). Finally, we
discuss different consistency models that are related to this dissertation

(§2.4).

2.1 Distributed Storage Systems

A distributed storage system consists of many servers. The servers may
be located within a single data center or spread across multiple data cen-
ters. The storage system maintains some persistent state; this state can
be a collection of key-value pairs, a database, etc. Clients interact with
the system through a set of operations. The operations can vary across
systems, but broadly operations can be classified into read-only (that re-
trieve data and do not modify any state) and write (that update existing
or store new data).

These storage systems must meet a few important goals. First, the
system must ensure durability of user data: it must not lose data that the

clients entrust the system with. Second, the system must be highly avail-



16

able and be able to provide access to user data even in the presence of
failures.

A key to building a system that offers the above properties is to employ
redundancy: instead of having a single copy of data, the system maintains
multiple copies of user data on disks of multiple machines. Thus, even
if one machine fails, the data is not lost because copies of the same data
exist on other machines. It is not just the data that is replicated but also
the functionality; identical copies of a program run on multiple machines
as well. Therefore, even if one machine fails, the code running on other
machines keeps the system available.

Given that there are many copies of data, one key challenge that the
distributed system faces is to maintain consistency, i.e., it must keep the
copies of data identical with each other. Anideal distributed system must
hide from clients that multiple copies exist and provide the illusion of a
single copy. However, several challenges must be solved to achieve such
ideal behavior. One challenge is dealing with failures. In the next section,
we discuss the various failures that are possible in a distributed system
(§2.2). We will then briefly discuss how existing systems maintain iden-
tical copies in the presence of failures (§2.3). Some distributed systems,
for high performance and availability, choose not to provide the illusion
of a single copy; we will discuss some of the possible (weaker) guarantees
that can be provided by such systems (§2.4).

In addition to the above properties, a distributed storage system must
also be performant and scalable. Scalability is usually achieved via shard-
ing. Massive data is partitioned into many smaller units called shards,
and the shards are distributed across many nodes; each shard fits within
a single node. For durability and availability, each shard is in turn repli-
cated. To update data across multiple shards, systems typically use trans-
actional mechanisms. In this dissertation, we focus mainly on applying

our ideas in non-sharded settings and therefore, we do not discuss shard-



17

ing in detail. However, as we discuss later (§4.7), our ideas can be applied

as-is or extended to multiple shards.

2.2 Faults in Distributed Systems

In this section, we discuss the different types of failures that a distributed

storage system must handle.

2.2.1 Fail-stop Failures

Under the fail-stop failure model, a component stops operating entirely.
For example, a process might fail or stop running because of a power loss
or an operating system crash. A network partition is also an example of
fail-stop failure where a node on the network is not reachable to other
nodes. Additionally, network packets may be lost, reordered, or delayed.

Before a component fails, it usually does not inform the other compo-
nents in the system of the imminent failure. Thus, the other components
have to detect that a component has failed. This detection is usually done
using the mechanisms of heartbeats and timeouts. Atahigh level, the mech-
anism works as follows. A node in the distributed system periodically
sends a heartbeat message to other nodes. If a node does not receive a
heartbeat message for a period of time from another node, then the node
considers the other node as failed. In such a case, there are two possi-
bilities. Either the node might have crashed, or the node is alive, but its
messages cannot reach the other node because of a network problem (e.g.,
a partition).

A failed node may recover after some time. For this reason, this model
is also referred to as the fail-recover model. For example, a node that
crashed due to a power loss recovers when power is restored afterwards.
When a node crashes due to a power failure and later recovers, all the
contents in its memory (DRAM) and disk caches are lost; only the persis-



18

tent data that is on the disk platter or solid-state drive survives. In case of
a network partition, while a node cannot communicate with other nodes,
its in-memory state usually remains intact. Systems that provide strong
guarantees require 2f + 1 nodes to tolerate f fail-stop failures; these sys-
tems are available only when the total number of fail-stop failures do not
exceed f.

2.2.2 Byzantine Faults

In this failure model, components in the distributed system may behave
arbitrarily. For example, a server might perform a computation incor-
rectly due to a malicious attack. A malicious node in the system might
provide conflicting information to different parts of the system [86]. The
node might even behave correctly at times that makes it appear like a
functioning node (for example, serve correct data). Therefore, these faults
are difficult to detect and tolerate. Protocols that tolerate such Byzan-
tine failures [34, 81] require 3f + 1 nodes to tolerate a total of f Byzantine
and fail-stop failures. However, many practical systems do not tolerate
such Byzantine faults. When nodes cannot trust each other (for exam-
ple, in peer-to-peer networks such as blockchains), the system must be
Byzantine fault-tolerant. However, in this dissertation, we focus on dis-
tributed storage systems deployed within a single administrative domain
and thus, the servers and clients can trust each other. Therefore, the fault

model we consider does not include Byzantine faults.

2.2.3 Storage Faults

Each node in a distributed storage system runs atop a local storage stack to
store and manage user data. The layers in a storage stack consist of many
complex hardware and software components [8, 9]. At the bottom of the

stack is the media (a disk or a flash device). The firmware above the me-



19

dia controls the functionalities of the media. Commands to the firmware
are submitted by the device driver. File systems manage these lower lay-
ers and provide interfaces to applications to use the storage. File systems
can encounter faults for a variety of underlying causes including media
errors, mechanical and electrical problems in the disk, bugs in firmware,
and problems in the bus controller [24, 25, 97, 112, 130, 155, 156]. Some-
times, corruptions can arise due to software bugs in other parts of the
operating system [39], device drivers [165], and sometimes even due to
bugs in file systems themselves [56].

Due to these reasons, two problems arise for file systems: block errors,
where certain blocks are inaccessible (also called latent sector errors) and
block corruptions, where certain blocks do not contain the expected data.

File systems can observe block errors when the disk returns an explicit
error upon detecting some problem with the block being accessed (such
as in-disk ECC complaining that the block has a bit rot) [25, 155]. A pre-
vious study [25] of over 1 million disk drives over a period of 32 months
has shown that 8.5% of near-line disks and about 1.9% of enterprise-class
disks developed one or more latent sector errors. More recent results
show similar errors arise in flash-based SSDs [97, 112, 156]. Similarly, a
recent study on flash reliability [156] over a period of six years has shown
that as high as 63% and 2.5% of millions of flash devices experience at least
one read and write error, respectively. Recent work from Tai et al. [166]
show that recent flash devices such as QLC NAND drives experience sig-
nificantly higher uncorrectable bit errors than other technologies (such as
SLC drives).

File systems can receive corrupted data due to a misdirected or a lost
write caused by bugs in drive firmware [24, 124] or if the in-disk ECC
does not detect a bit rot. Block corruptions are insidious because blocks
become corrupt in a way not detectable by the disk itself. File systems, in

many cases, obliviously access such corrupted blocks and silently return



20

them to applications. Bairavasundaram et al., in a study of 1.53 million
disk drives over 41 months, showed that more than 400,000 blocks had
checksum mismatches [24]. Anecdotal evidence has shown the preva-
lence of storage errors and corruptions [46, 73, 151]. Given the frequency
of storage corruptions and errors, there is a non-negligible probability for
file systems to encounter such faults.

In many cases, when the file system encounters a fault from its un-
derlying layers, it simply passes it as-is onto the applications [130]. For
example, the default Linux file system, ext4, simply returns errors or cor-
rupted data to applications when the underlying block is not accessible or
is corrupted, respectively. In a few other cases, the file system may trans-
form the underlying fault into a different one. For example, btrfs and
ZFS transform an underlying corruption into an error; when an underly-
ing corrupted disk block is accessed, the application will receive an error
instead of corrupted data [187]. In either case, we refer to these faults
encountered by applications running atop the file system as storage faults.

Given this, itis important for applications that run on local file systems
to tolerate storage faults. It is even more critical for large-scale application
deployments to handle such faults because they often tend to use cheap
hardware (because it is more economical than buying expensive hard-
ware). Prior studies have shown that such cheap nearline disks are more
prone to faults than enterprise-class devices [22]. Many seminal systems
have been built in this spirit. For instance, Ghemawat et al. describe how
they employ end-to-end checksum-based detection and recovery in the
Google file system as the underlying IDE disks would often corrupt data
on the chunk servers [62]. Similarly, lessons from Google [50] in build-
ing large-scale Internet services emphasize how reliability must be built
into software layers running atop unreliable hardware. Given this, in this
dissertation, we examine a fundamental question: do modern distributed

storage systems detect and recover from storage faults correctly? Do they



21

use the inherent redundancy to recover from local storage faults on one

or a few nodes?

2.3 Leader-based Majority Systems

In Chapters 4 and 5, we focus on leader-based majority systems. Specifi-
cally, we built Cap and cross-client monotonicity for leader-based major-
ity systems. Thus, in this section, we provide a brief overview of such
systems.

As we discussed earlier, replicas in a distributed system need to be
kept consistent (identical with each other). However, this becomes com-
plicated in the presence of concurrent requests and failures. For exam-
ple, consider a simple distributed system with two replicas storing a data
item a. Two clients wish to concurrently update this data item. Client c
wishes to set a to 0, while the other client ¢; wishes to update a to 1. If
these requests are received by the replicas in different orders, then they
will diverge. Specifically, the request from c; may arrive before cg’s re-
quest at one replica and the other way around at the other replica, leading
to divergence. Similarly, failures also cause complications. For instance,
after cp updates a on both replicas, ¢; might send its request only to one
replica and fail before sending the request to the other, again causing di-
vergence.

One common way distributed systems solve this problem is designat-
ing one of the replicas as the leader of the system; other nodes are referred
to as followers. The leader is associated with an epoch: a slice of time; for
a given epoch, at most one leader can exist [19, 120]. In this setup, clients
send their requests only to the leader. The leader then establishes a sin-
gle order for the requests and then replicates the requests in order to the
followers. The intuition is that if all the nodes (leader and followers) start

from the same initial state, apply the same sequence of commands in or-



22

der, then the nodes will have identical states.

In addition to ensuring order, the system must ensure that updates
survive node failures. As we discussed above, when a node crashes, it
loses its volatile state. Therefore, the nodes store the commands persis-
tently on an on-disk log on their local storage medium. If a node fails, it
can replay the operations from a log to recreate the volatile state it lost.

To summarize, the update protocol in a leader-based system works as
follows: the client first sends a request to the leader. The leader appends
the request to its on-disk log. Each log entry is uniquely identified by the
epoch in which it was appended and the position of the update in the
log (i.e., the log index). The leader then persists the appended request to
storage and also sends the request to the followers. The followers persist
the request to their logs and acknowledge the leader. Once a sufficient
number of followers have acknowledged, the leader applies the request
(for example, update a key-value pair), and sends the response back to
the client. At this point, the client request is said to be committed, and
thus the storage system must always recover this update, irrespective of
failures.

The number of followers the leader waits for in the critical path varies
across different distributed systems. For example, this could range from
none to all. In this dissertation, we focus on a special class of systems,
that wait for a majority of nodes to acknowledge a request (including the
leader) before considering a request to be committed. Majority is defined
as |[n/2] + 1 nodes in a system with n nodes (e.g., 3 out of 5 servers). Such
systems are available as long as a majority of nodes are up and function-
ing; in other words, the system can tolerate the crash or partition of a
minority of nodes.

The leader constantly sends heartbeats to the followers to check if they
have failed. If a follower fails, the leader can continue accepting requests

as long [n/2| followers are available (and following the leader). When a



23

failed follower recovers, it can just follow the leader; the leader sends the
commands the follower missed (in order) bringing the follower up-to-
date. The leader steps down if it does not hear from a majority (including
self) for a while.

The system must also deal with leader failures. If the followers do not
hear from the leader for a while, they become candidates and try to elect a
new leader. At a high level, leader election works as follows. A candidate
sends a vote request to other nodes. A node p votes for another node q if
p has not already voted for another candidate and if q’s log is at least as
complete as the log of p. The candidate that receives votes from at least a
majority (including self) is elected as the leader. This ensures that only a
node that has all the committed data becomes the leader; this is a property
that many practical leader-based majority systems ensure [12, 120].

2.4 Consistency Models

One of the contributions of this dissertation is a new consistency model;
thus, we now explain some of the existing models. As we discussed ear-
lier, multiple clients may submit operations to the storage system concur-
rently. A consistency model defines the permissible orderings of these
operations submitted by clients and restricts what results can be returned
by an operation [7, 176]. In this thesis, we focus on non-transactional se-
mantics (i.e., single-object semantics); thus, we do not discuss guarantees
that arise in the context of transactional distributed systems such as ex-

ternal consistency [45] and serializability [6].

2.4.1 Strong Consistency

Linearizability [7, 70] is a strong consistency model that hides from clients
the fact that multiple copies exist. Under this consistency model, each op-
eration appears to take effect instantaneously between its invocation and



24

completion. Linearizability also establishes a real-time total ordering of
operations. If an operation op, starts after another operation op; com-
pletes, then op, must be ordered after op; and see the effects of op;. For
example, if op; updates a data item, and op, reads the item, op, must
at least return the value written by op;. Consequently, clients are never
exposed to stale data in a linearizable system. If op; starts after op; starts
but before op; completes, then these operations are concurrent. Such con-
current operations can be ordered in any way, but this order must be the
same across replicas. Thus, linearizability also prevents the case where
a client reads an updated state at one point, and subsequently, another
client reads an older state.

Sequential consistency [84] is weaker than linearizability. It estab-
lishes a total ordering of operations across replicas; however, the order
need not reflect the real-time order except for operations initiated in a
single client. Therefore, in this model, clients need not see the latest data
written by other clients. If a client reads some data, then the same client
must at least read that data, while a different client need not see that
data. However, all updates are ordered in the same order across replicas.
Leader-based majority systems that establish a single order of operations

at least provide sequential consistency.

2.4.2 Weaker Models

We now discuss models that do not establish total ordering and are weaker
than sequential consistency and linearizability. Systems that provide these
weaker guarantees are performant and provide low latencies [91]. How-
ever, they expose inconsistencies to clients and applications, providing
unintuitive semantics; therefore, these models are difficult to program
against [7, 169, 176].

Causal consistency. Causal consistency [23, 91] is a weaker model than



25

linearizability and sequential consistency. Under this model, operations
are not globally ordered. Only causally related operations are ordered
in the same way across clients; clients can disagree on the order of other
operations. All operations from a single client (or a single thread of exce-
cution) are causally related. Two operations op; and op; are also causally
related if op; is a write and op, is a read, and op; notices the value writ-
ten by op;. Causality is also transitive: op; causally precedes op; if op;

causally precedes op3 and ops causally precedes ops.

Monotonic reads. Under this consistency guarantee, if a read from a
client returns a value, then a subsequent read to the same data item from
the same client must return the same value or a later version [169, 170].
While this guarantee may seem similar to cross-client monotonicity that
we introduce in this dissertation, it is quite different. Specifically, unlike
our model, this model does not ensure read monotonicity across clients

or even different sessions of the same client application.

Eventual consistency. This is one of the weakest guarantees a distributed
system can provide. In this model, replicas need not be identical at all
times. However, when there are no updates or failures, the replicas must
eventually converge and become identical [168, 169]. Under eventual con-
sistency, there is no constraint on the ordering of operations, and reads

can see any value.

2.5 Summary

In this chapter, we presented the background essential to understanding
this dissertation. We described the basic concepts in a distributed storage
system. We discussed the various failures possible in a distributed sys-
tem, including storage faults. We provided an overview of leader-based

majority systems and some of the existing consistency models.



26

3

Analysis of Distributed Systems
Reactions to Storage Faults

In a distributed storage system, each replica works atop a commodity lo-
cal file system on commodity hardware, to store and manage critical user
data. However, unfortunately, as we discussed earlier (in §2.2.3), the local
storage stack can sometimes return corrupted data or errors. Therefore,
the ultimate responsibility of data integrity and proper error handling
falls to applications that run atop local storage.

Most single-machine applications such as stand-alone databases and
non-replicated key-value stores solely rely on local file systems to reliably
store data; they rarely have ways to recover from local storage faults. For
example, on a read, if the file system returns an error or corrupted data,
these applications have no way of recovering that piece of data. Their
best possible course of action is to reliably detect such faults and deliver
appropriate errors to users.

Most modern distributed storage systems, much like single-machine
applications, also rely upon local file systems to safely manage critical
user data. However, unlike single-machine applications, distributed sys-
tems inherently store data in a replicated fashion. A carefully designed
distributed storage system can potentially use this inherent redundancy
to recover from errors and corruptions, irrespective of the support pro-
vided by its local file system.



27

Given this, in this chapter, we analyze how modern distributed stor-
age systems react to storage faults and whether these systems preserve
the durability of data in the presence of such faults. To do so, we build
a fault-injection framework called Corps that systematically injects stor-
age faults and observes the effects of the injected faults. Using Corbs,
we studied eight widely used systems: Redis [134], ZooKeeper [16], Cas-
sandra [13], Kafka [15], RethinkDB [143], MongoDB [101], LogCabin [92],
and CockroachDB [41].

A correctly designed distributed system should not be affected when
data on one or a few replicas is corrupted: given that intact copies of the
same data exist on other replicas, a correct system must be able to recover
from such scenarios. Similarly, errors in one or a few nodes should not
affect the global availability of the system given that the functionality (ap-
plication code) is also replicated across many nodes.

However, from our study, we find that most distributed systems do not
effectively utilize the redundancy to recover from local faults; even a sin-
gle storage fault in one of the replicas can lead to catastrophic outcomes
such as data loss, silent corruption, unavailability, or sometimes even the
spread of corrupted data to other intact replicas. While some of these out-
comes are caused due to implementation-level bugs that could be fixed
by moderate developer effort, most of them arise due to a few fundamen-
tal root causes in storage-fault handling that are prevalent across many
systems. This chapter is based on the paper, Redundancy Does Not Imply
Fault Tolerance: Analysis of Distributed Storage Reactions to Single Errors and
Corruptions, published in FAST 17 [59].

The chapter is organized as follows. First, we describe our fault model
(§3.1) and how our framework injects faults and observes behaviors (§3.2).
Next, we present our behavior analysis for each system (§3.3). We then de-
rive and present a set of observations across all eight systems (§3.4). Next,
we discuss features of current file systems that can impact the problems



28

we found (§3.5) and our experience interacting with developers (§3.6).
We then discuss why systems are not tolerant of storage faults and how
the problems can be potentially fixed (§3.7). Finally, we summarize and
conclude (§3.8).

3.1 Fault Model

The storage devices beneath the file systems can throw errors or return
corrupted data. The local file system may sometimes propagate such stor-
age faults arising from the underlying devices as-is to distributed systems
running atop it. In some cases, the file system may also convert some of
these faults into errors. The goal of our fault model is to capture these dif-
ferent fault conditions that an application might encounter when running
atop a local file system. While a distributed system might encounter many
kinds of faults such as system crashes, network partitions, and power fail-
ures, our goal in this work is to analyze how distributed systems react to
storage faults; therefore, our fault injection framework introduces only
storage faults.

Our fault model has two important characteristics. First, our model
considers injecting exactly a single fault to a single file-system block in a
single node of the distributed system at a time. While correlated stor-
age faults [24, 25] are interesting, we focus on the most basic case of in-
jecting a single fault in a single node because our fault model intends
to give maximum recovery leeway for applications. Correlated faults,
on the other hand, might preclude such leeway. For example, if two or
more blocks containing important application-level data structures are
corrupted (possible in a correlated fault model), there might be less op-
portunity for the application to salvage its state. Second, our model injects
faults only into application-level on-disk structures and not file-system

metadata. File systems may be able to guard their own (meta)data [57];



29

Type of Fault Op Example Causes
lost and misdirected writes in ext
Block Zeros Read and XFS
Corruption lost and misdirected writes in ext

junk Read and XES

latent sector errors in all file
Read | systems, disk corruptions in ZFS,
btrfs
tile system mounted read-only,
on-disk corruptions in btrfs

I/0 error
(EI10)
Block Error Write

Space error
(ENOSPC, Write
EDQUOT)

disk full, quota exceeded in all file
systems

bit rots not detected by in-device

Bit Corruption Read ECC in ext and XFS

Table 3.1: Possible Faults and Example Causes. The table shows storage faults
captured by our model and example root causes that lead to a particular fault during read
and write operations.

however, if user data becomes corrupt or inaccessible, the application will
either receive a corrupted block or perhaps receive an error (if the file sys-
tem has checksums for user data). Thus, it is essential for applications to
handle such cases.

Table 3.1 shows faults that are possible in our model during read and
write operations and some examples of root causes in most commonly
used file systems that can cause a particular fault. For all further discus-
sion, we use the term block to mean a file-system block.

It is possible for applications to read a block that is corrupted (with
zeros or junk) if a previous write to the underlying disk block was lost or
some unrelated write was misdirected to that block. For example, in the
ext family of file systems and XFS, there are no checksums for user data
and so it is possible for applications to read such corrupted data, without
any errors. Our model captures such cases by corrupting a block with



30

zeros or junk on reads.

Even on file systems such as btrfs and ZFS where user data is check-
summed, detection of corruption may be possible but not recovery (un-
less mounted with special options such as copies=2 in ZFS). Although user
data checksums employed by btrfs and ZFS prevent applications from ac-
cessing corrupted data, they return errors when applications access cor-
rupted blocks. Our model captures such cases by returning similar errors
on reads. Also, applications can receive EI0 on reads when there is an
underlying latent sector error associated with the data being read. This
condition is possible on all commonly used file systems including ext4,
XFS, ZFS, and btrfs.

Applications can receive EI0 on writes from the file system if the un-
derlying disk sector is not writable and the disk does not remap sectors, if
the file system is mounted in read-only mode, or if the file being written
is already corrupted in btrfs. On writes that require additional space (for
instance, append of new blocks to a file), if the underlying disk is full or
if the user’s block quota is exhausted, applications can receive ENOSPC and
EDQUOT, respectively, on any file system.

Our fault model also includes bit corruptions where applications read
a similar-looking block with only a few bits flipped. This condition is
possible when the in-disk ECC does not detect bit rots and the file system
also does not detect such conditions (for example, XFS and ext) or when
memory corruptions occur (e.g., corruptions introduced after checksum
computation and before checksum verification [187]).

Our fault model injects faults in what we believe is a realistic man-
ner. For example, if a block marked for corruption is written, subsequent
reads of that block will see the last written data instead of corrupted data.
Similarly, when a block is marked for read or write error and if the file is
deleted and recreated (with a possible allocation of new data blocks), we

do not return errors for subsequent reads or writes of that block. Simi-



31

larly, when a space error is returned, all subsequent operations that re-
quire additional space will encounter the same space error. Notice that
our model does not try to emulate any particular file system. Rather, it
suggests an abstract set of faults possible on commonly used file systems

that applications can encounter.

3.2 Methodology

We now describe our methodology to study how distributed systems re-
act to storage faults. We built Corbs, a fault injection framework that con-
sists of errfs, a FUSE [58] file system, and errbench, a set of workloads and

a behavior-inference script for each system.

3.2.1 System Workloads

To study how a distributed storage system reacts to local storage faults,
we need to exercise its code paths that lead to interaction with its local file
system. We crafted a workload suite, errbench, for this purpose; our suite
consists of two workloads per system: read an existing data item, and
insert or update a data item. Although our workloads might not exercise
all code paths that lead to storage interaction, they are the most important
of all workloads and give us insight as to how a particular system reacts
to storage faults.

3.2.2 Fault Injection

Figure 3.1 illustrates our methodology to analyze the behavior of dis-
tributed systems. We initialize the system under study to a known state
by inserting a few data items and ensuring that they are safely replicated
and persisted on disk. Our workloads either read or update the items
inserted as part of the initialization. Next, we configure the application



32

Cluster Initial State

\/

Configure system to run
atop errfs

Run workload script

l Fault config:
Fault injection via errfs < ----- Node,
data structure,

Behavior inference

v

1

1

1

1

1

1

1

1

1

:

1

! ¢ type of fault
|

1

1

1

:

I -

: Local behavior Repeat for all nodes,

| Global effect data structures, and faults

Figure 3.1: Corps Methodology. The figure shows an overview of our methodol-
ogy to study how distributed systems react to local storage faults.

to run atop errfs by specifying its mount point as the data-directory of
the application. Thus, all reads and writes performed by the application
flow through errfs which can then inject faults. We run the application
workload multiple times, each time injecting a single fault for a single file-
system block through errfs. If the application-level data structure spans
multiple file-system blocks, we inject a fault only in a single file-system
block constituting that data structure at a time. For bit corruptions, we
flip a bit in a single field within a block at a time.

Errfs can inject two types of block corruptions: corrupted with zeros or
junk. For block corruptions, errfs performs the read and changes the con-
tents of the block that is marked for corruption, before returning to the
application, as shown in Figure 3.2. Errfs can inject three types of block



33

Node 1 <) Node2  <¢==) Node 3

corrupt or
: 'return error

errfs errfs errfs

read/write
data block

........... ;\.V\
\ 'S
\ S
\ S,
\ ~
Local Behavior: Global Effect:
No Detection/Recovery Corruption
Partial Crash Data loss
Crash Unavailable
Ignore Faulty Data Write Unavailable
Log Error Read Unavailable
Retry Query Failure
Internal Redundancy Reduced Redundancy
Correct

Figure 3.2: Errfs and Behavior Inference. The figure illustrates how errfs
injects faults (corruptions and errors) into a block and how we observe the local behavior
and the global effect of the injected fault.

errors: EI0 on reads (read errors), EI0 on writes (write errors) or ENOSPC and
EDQUOT on writes that require additional space (space errors). To emulate
errors, errfs does not perform the operation but simply returns an appro-
priate error code. For bit corruptions, errfs requires application-specific
information consisting of various fields within a block along with their
offsets and lengths. To inject a bit corruption, errfs flips a bit in the field

that is marked for corruption before returning the data.



34

3.2.3 Behavior Inference

For each run of the workload where a single fault is injected, we observe
how the system behaves. Our system-specific behavior-inference scripts
glean system behavior from the system’s log files and client-visible out-
puts such as server status, return codes, errors (stderr), and output mes-
sages (stdout). Once the system behavior for an injected fault is known,
we compare the observed behavior against expected behaviors. The fol-
lowing are the expected behaviors we test for:

* Committed data should not be lost

* Queries should not silently return corrupted data
® The cluster should be available for reads and writes
* Queries should not fail after retries

We believe our expectations are reasonable since a single fault in a
single node of a distributed system should ideally not result in any un-
desirable behavior. If we find that an observed behavior does not match
expectations, we flag that particular run (a combination of the workload
and the fault injected) as erroneous, analyze relevant application code,
contact developers, and file bugs.

In a distributed system, multiple nodes work with their local file sys-
tem to store user data. When a fault is injected in a node, we need to
observe two things: local behavior of the node where the fault is injected
and global effect of the fault, as shown in Figure 3.2.

Local Behavior. In most cases, a node locally reacts to an injected fault.
A node can crash or partially crash (only a few threads of the process are
killed) due to an injected fault. In some cases, the node can fix the prob-
lem by retrying any failed operation or by using internally redundant data
(cases where the same data is redundant across files within a replica). Al-
ternatively, the node can detect and ignore the corrupted data or just log



35

an error message. Finally, the node may not even detect or take any measure
against a fault.

Global Effect. The global effect of a fault is the result that is externally vis-
ible. The global effect is determined by how distributed protocols (such
as leader election, consensus, recovery, repair) react in response to the
local behavior of the faulty node. For example, even though a node can
locally ignore corrupted data and lose it, the global recovery protocol can
potentially fix the problem, leading to a correct externally observable be-
havior. Sometimes, because of how distributed protocols react, a global
corruption, data loss, read-unavailability, write-unavailability, unavailability,
or query failure might be possible. When a node crashes as a local reac-
tion, the system runs with reduced redundancy until manual intervention.

These local behaviors and global effects for a given workload and a
fault might vary depending on the role played (leader or follower) by the
node where the fault is injected. For simplicity, we uniformly use the
terms leader and follower instead of primary and backup.

We note that our workload suite and model are not complete. First, our
suite consists only of simple read and write workloads while more com-
plex workloads may yield additional insights. Second, our model does
not inject all possible storage faults; rather, it injects only a subset of faults
such as corruptions, read, write, and space errors. However, even our
simple workloads and fault model drive systems into corner cases, lead-
ing to interesting behaviors. Our framework can be extended to incorpo-
rate more complex faults and our workload suite can be augmented with

more complex workloads; we leave this as an avenue for future work.

3.3 System Behavior Analysis

We studied eight widely used distributed storage systems: Redis (v3.0.4),
ZooKeeper (v3.4.8), Cassandra (v3.7), Kafka (v0.9), RethinkDB (v2.3.4),



36

MongoDB (v3.2.0), LogCabin (v1.0), and CockroachDB (beta-20160714).
We configured all systems to provide the highest safety guarantees pos-
sible; we enabled checksums, synchronous replication, and synchronous
disk writes. We configured all systems to form a cluster of three nodes
and set the replication factor at three. In this section, we present our de-
tailed behavioral analysis for each system.

For each system, we describe the behaviors when block corruptions
and block errors are injected into different on-disk structures. For each
system, we also show the format of the on-disk files and the logical data
structures in the system. The on-disk structure names take the form:
file_name.logical_entity. We derive the logical entity name from our un-
derstanding of the on-disk format of the file. If a file can be contained in
a single file-system block, we do not show the logical entity name. For a
few systems (Redis, Cassandra, and Kafka), we perform a more detailed

analysis by injecting bit corruptions in addition to block faults.

3.3.1 Redis

Redis is a popular data structure store, used as database, cache, and mes-
sage broker. Redis uses asynchronous primary-backup replication by de-
fault. However, Redis can be configured to perform synchronous replica-
tion using the WAIT option [139]. Redis does not elect a leader automati-

cally when the current leader fails.

On-disk Structures. Figure 3.3 shows the on-disk structures of Redis. Re-
dis uses a simple appendonly log file (aof) to store the sequence of com-
mands or operations that modify the database state. The appendonly
file is not checksummed. Before recording a sequence of operations, a
database identifier is logged; this identifier specifies the database to which
the operations are to be applied when the appendonly file is later re-

played. Periodic snapshots are taken from the aof to create a redis database



37

db

lyfil
appendonlyfile select

operationl|operation2| ««-

db select operation (op)

db | db op op key
length |num| [length length

value
length

=nn| select key value

redis . . value
magic [version [=== db

database numl| type key |value [ «e+

Logical structures:

appendonlyfile.metadata ' metadata blocks of aof
appendonlyfile.userdata | user data (key and value) blocks of aof
redis_database.block 0 first block of rdb (contains magic)
redis_database.metadata | metadata blocks of rdb

redis_database.userdata | user data (key and value) blocks of rdb

Figure 3.3: Redis On-disk Structures. The figure shows the on-disk format of
the files and the logical data structures of Redis. The logical structures take the following
form: file_name.logical_entity. If a file can be contained in a single file-system block, we
do not show the logical entity name.

file (rdb). During startup, the followers re-synchronize the rdb file from
the leader. The entire rdb file is protected by a single checksum.

Behavior Analysis. Figure 3.4 shows the behavior of Redis when block
corruptions and block errors are introduced into different on-disk struc-
tures. When there are corruptions in metadata structures in the appen-
donly file or errors in accessing the same, the node simply crashes (first
row of local behavior boxes for both workloads in Figure 3.4). If the leader
crashes, then the cluster becomes unavailable and if the followers crash,
the cluster runs with reduced redundancy (first row of global effect for
both workloads).

Redis does not use checksums for user data in the appendonly file;
thus, it does not detect corruptions (second row of local behavior for both



38

Local Behavior Global Effect

Corrupt Errors Corrupt Errors

junk zero|read writespace junk zero|read ertespace

KXIX XX X - : v appendonlyfile.metadata

3 3|8 B[X X P appendonlyfile.userdata

E E X X redis_database.block_0

@:X|8:X|@:X X redis_database.metadata

@ X|B X|P X ] P redis_database.userdata
(i)Workload: Read

Corrupt Errors Corrupt Errors

junk zero|read writespace junk zero read wrltespace

XXIXIXIX XX XX X (€D X D appendonlyfile.metadata

appendonlyfile.userdata

X X|X:X

28|18 8IXX
; ; X| : , i i _|redis database.block 0
g:X|g:X[g:X] | '11]0 Xl XL | ¢ |redis database. metadata
2:X|8:X|g:X] ! P O XD A 4] i _|redis database.userdata
LFLFLFLFLF LFLFLFLFLEF

(ii)Workload: Update

Legend: Local Behavior

No Detection/Recovery [\ Partial Crash Crash
[ Ignore Faulty Data [X] Log Error HRetry
[ Internal Redundancy ] Not Applicable

Legend: Global Effect

\\

&) Corruption Data loss Unavailable
Write Unavailable Read Unavailable [@ Query Failure
Reduced Redundancy [] Correct [ Not Applicable

Figure 3.4: Redis Behavior: Block Corruptions and Errors. The figure
shows system behavior when corruptions (corrupted with either junk or zeros), read er-
rors, write errors, and space errors are injected in various on-disk structures in Redis.
Within each system workload (read and update), there are two boxes — first, local be-
havior of the node where the fault is injected and second, cluster-wide global effect of the
injected fault. The rightmost annotation shows the on-disk logical structure in which the
fault is injected. Annotations on the bottom show where a particular fault is injected (L
— leader, F — follower). A gray box indicates that the fault is not applicable for that logical
structure. For example, write errors are not applicable for any data structures in the read
workload (since they are not written) and hence shown as gray boxes.



39

I Client Leader Followers
: aof.userdata
I corrupted
; : read [ ] resync
< corr_uptz:z construct rdb Bad db
: <+——  fromaof from leader
| read . e
; corrupted
-

Figure 3.5: Redis Corruption Propagation. The figure depicts how the re-
synchronization protocol in Redis propagates corrupted user data in appendonly file (aof)
from the leader to the followers, leading to a global user-visible corruption. Time flows
downwards as shown on the left. The black portions denote corruption.

workloads). If the leader is corrupted, it leads to a global user-visible
corruption, and if the followers are corrupted, there is no harmful global
effect (second row of global effect for read workload). Figure 3.5 shows
how the re-synchronization protocol propagates corrupted user data in
aof from the leader to the followers leading to a global user-visible cor-
ruption. The same protocol unintentionally fixes the corruption at the
followers by fetching the intact data from the leader. In contrast, errors in
appendonly file user data lead to crashes (second row of local behavior
for both workloads); crashes of the leader and followers lead to cluster un-
availability and reduced redundancy, respectively (second row of global
effect for both workloads).

Problems in the first block of redis_database are fixed by retrying and
creating the redis_database file again from data in the appendonly file
(third row in Figure 3.4). When the redis_database file on a follower is cor-
rupted, it crashes, leading to reduced redundancy. Since the leader sends
the rdb file during re-synchronization, corruption in the same causes both
the followers to crash. These crashes ultimately make the cluster unavail-
able for writes (fourth and fifth rows in Figure 3.4).



40

Local Global

i 4| appendonlyfile.db_length

. | appendonlyfile.db_num
appendonlyfile.op_length
appendonlyfile.op
appendonlyfile.key length
appendonlyfile.key
appendonlyfile.value length
appendonlyfile.value

X
X

T SX XX XS,
= [e]Xe]X[X[X]s:

Legend: Local Behavior

No Detection/Recovery [N Partial Crash Crash
[MIgnore Faulty Data [X]Log Error HRetry
[l Internal Redundancy ~ [C]Not Applicable

Legend: Global Effect

Corruption Data loss Unavailable
Write Unavailable Read Unavailable & Query Failure
Reduced Redundancy [] Correct I Not Applicable

Figure 3.6: Redis Behavior: Bit Corruptions. The figure shows the behav-
ior when bit corruptions are injected. For bit corruptions, we flip a single bit in a field
within the on-disk structure. For example, appendonlyfile.db_num is part of appendon-
lyfile.metadata.

Bit Corruptions. Figure 3.6 shows the behavior of Redis when bit cor-
ruptions are injected. A single flipped bit in most of the appendonly file
metadata structures results in a failed deserialization, ultimately leading
to a crash. If the leader crashes, then the cluster becomes unavailable and
if the followers crash, the cluster runs with reduced redundancy. On the
leader, a bit flip in the key field results in a silent data loss while a bit flip
in the value field results in a silent corruption.

Redis maintains a database identifier (db_num) for each database. When
some data is inserted or updated, first the appropriate database (specifi-
cally, the database identifier) is recorded in the appendonly file followed
by the actual update. If a bit in the recorded database identifier (P) flips



41

and so changes to a new value (Q), then all succeeding operations in the
appendonly file are redirected to database Q instead of P. This single bit
flip in the database identifier results in a silent data loss when database
P is queried while supplying spurious data when database Q is queried.

In our bit-corruption experiments, we reduce the granularity of our
faults: we flip a single bit in a field within the on-disk structure. Our bit-
corruption experiments help uncover interesting behaviors not discov-
ered through our block-corruption experiments. For instance, consider
the field appendonlyfile.db_num which is part of appendonlyfile.metadata. When
we inject a coarse block corruption in appendonlyfile.metadata on the leader
(first row in Figure 3.4), the leader crashes, making the cluster unavail-
able. In contrast, when we inject a fine-grained bit flip in appendonly-
file.db_num on the leader (second row in Figure 3.6), it results in a data
loss, as described above.

3.3.2 ZooKeeper

ZooKeeper is a popular service for storing configuration information, nam-
ing, and distributed synchronization. ZooKeeper provides a hierarchi-
cal name space (a data tree) and supports operations such as creation and
deletion of nodes in the data tree. ZooKeeper implements state machine
replication and uses an atomic broadcast protocol (ZAB) to maintain iden-
tical states in all the nodes in the system. The system remains available
as long as a majority of the nodes are functional. It provides durability
by persisting operations in a log and persisting periodic snapshots of the

data tree.

On-disk Structures: Figure 3.7 shows the on-disk structures of ZooKeeper.
ZooKeeper uses log files to append user data. The log contains a log
header (magic, version, etc.) followed by a sequence of transactions. A
transaction consists of a transaction header and is protected by a check-
sum. The transaction header contains epoch, session id, etc. ZooKeeper



42

log file magic |version d(l; txnl | txn2 | e
i

check| txn txn txn

transaction (txn)
-sum | length | header | data

Logical structures:

epoch current and last accepted epoch
epoch_tmp renamed to epoch after updating
myid node id within cluster
log.transaction_head log and transaction header
log.transaction_body user data blocks of transaction in log
log.transaction_tail tail blocks of transaction in log
log.remaining unused (zero-padded) log portions
log.tail last block of log

Figure 3.7: ZooKeeper On-disk Structures. The figure shows the on-disk
format of the files and the logical data structures of ZooKeeper.

maintains two important metadata structures: epoch (accepted and cur-
rent epoch) and myid (node identifier). Epochs are updated by first writ-
ing to epoch_tmp and then renaming it to epoch.

Behavior Analysis. Figure 3.8 shows the behavior when block corrup-
tions and block errors are introduced in ZooKeeper. ZooKeeper can de-
tect corruptions in the transaction_head and transaction_body of the log
using checksums but reacts by simply crashing (fourth and fifth rows of
local behavior for both workloads in Figure 3.8). When epoch and myid
are corrupted or cannot be read, the node simply crashes (first and third
rows for both workloads). Similarly, it crashes in most error cases, lead-
ing to reduced redundancy. In all crash scenarios, ZooKeeper can reli-
ably elect a new leader, thus ensuring availability. ZooKeeper ignores a
transaction locally when its tail is corrupted (sixth row of local behavior

for both workloads); the leader election protocol prevents that node from



43

Local Behavior Global Effect
Corrupt Errors Corrupt Errors
junk zero|read ertespace junk zero|read ertespace
X XXX X X| Pavdvavdlé X : epoch

L —i— X:X L X :X epoch_tmp
Xi XXX X Xl i yavavravdr e / ; ; myid
X XX XIX XN BINB| | X XX XX XX X |log.transaction_head
X XX X[X X]| M Vardrdvdravd i ]log.transaction_body
L] XiX XX log.transaction_tail
golgglgdl | L -1 Pl llog.remaining
g oo BINGING|| | ‘]| |X |X ]logtail

(i)Workload: Read

Corrupt Errors Corrupt Errors
junk zero|read ertespace junk zero|read ertespace
XX x:xxx - XX Xl!!! - epoch

L Z X:X o E X:X epoch_tmp
X XX X|X: x : m |rararavivaim L | myid
XXX XXX\ BN\ 8| [¥ ¥[X ¥[¥ ¥|D_|D_|log.transaction_head
XXX XIX X|g: 8] | || XX XLXH] i |log.transaction_body
LI TXX[g: 8 : P LIl 0 b log.transaction tail
gog\g g dl | L - it llogremaining
ICACIC ) \=¢\¢ T 17D KD |logtail
LFLFLFLFLF LFLFLFLFLF

(ii)Workload: Update

Legend: Local Behavior

No Detection/Recovery [\ Partial Crash Crash
[ Ignore Faulty Data [X] Log Error HRetry
[l Internal Redundancy ] Not Applicable

Legend: Global Effect

&) Corruption Data loss Unavailable
Write Unavailable Read Unavailable [@ Query Failure
Reduced Redundancy [ ] Correct [ Not Applicable

Figure 3.8: ZooKeeper Behavior. The figure shows system behavior when faults
are injected in various structures in ZooKeeper.

becoming the leader. Eventually, the corrupted node repairs its log by
contacting the leader, leading to correct behavior (sixth row of global ef-



44

Client Leader Followers
Ping-OK
write error on < »

=== == —— -

§ log.txn_head/log.tail
~ kill transaction threads
write 233 Ping-OK
——
failure
R E— Ping-OK
>

Figure 3.9: ZooKeeper Write Unavailability. The figure shows how write
errors lead to unavailability in ZooKeeper.

fect for both workloads). While ignoring a transaction locally does not
lead to catastrophic outcomes in our experiments, data can be lost when
we introduce more than one fault (such as data corruption on multiple
nodes or corruption on one node along with a lagging node), as shown
by our follow-on work [10].

ZooKeeper does not recover from write errors to the transaction head
and log tail (fourth and eighth rows in Figure 3.8). Figure 3.9 depicts
this scenario. On write errors during log initialization, the error handling
code tries to gracefully shutdown the node but kills only the transaction
processing threads; the quorum thread remains alive (partial crash). Con-
sequently, other nodes believe that the leader is healthy and do not elect a
new leader. However, since the leader has partially crashed, it cannot pro-
pose any transactions, leading to an indefinite write unavailability. No-
tice that this scenario does not cause a harmful global effect for the read
workload as reads can be locally served by any node, without requiring

the leader to propose new transactions.



45

tablesst e T Totfset 1 |key 128] offset 128 -~ tablesst [Faree™
summary ~ filter
“a
te.lblesst key 1 [offset 1| key 2 | offset 2 [+
index pre
A’
tablesst[ keyl datal
data |length keyl length datal

Logical structures:

tablesst data.block 0 ' block 0 of data file in sstable for userdata
tablesst data.metadata ' meta data blocks of data file in sstable
tablesst data.userdata ' user data blocks of data file in sstable

tablesst data.tail metadata blocks of rdb

tablesst index index file in sstable

tablesst filter Bloom filter file in sstable
tablesst_statistics.0 block zero of statistics file in sstable
tablesst_statistics.1 block one of statistics file in sstable
tablesst_summary summary file in sstable

tablesst compinfo contains compression information

Figure 3.10: Cassandra On-disk Structures. The figure shows the on-disk
format of the files and the logical data structures of Cassandra.

3.3.3 Cassandra

Cassandra is a Dynamo-like [51] NoSQL store. Unlike other systems we
study, Cassandra is a decentralized system; it does not have leaders and
followers. The system divides all data evenly around a cluster of nodes,
which form a ring. Cassandra replicates the data to a number of nodes
specified by the replication factor. It also supports different read and
write consistency levels. In Cassandra, rows are organized into tables and
the rows are divided among nodes in the cluster based on a hash of the
primary key. Cassandra also provides a SQL-like query language (CQL).

On-disk Structures: In Cassandra, the local storage engine is a variation



46

of log-structured merge (LSM) trees [118] that stores data in sstables. A
separate sstable is maintained for each key-space; we refer to the sstables
of user-created key-space as tablesst. Figure 3.10 shows the on-disk files in
an sstable. Each sstable consists of a Bloom filter (tablesst_filter); the filter
provides a fast way to determine whether a given key is present or not.
If a key is found in the filter, then the table summary (tablesst_summary)
and table index (tablesst_index) are accessed. The tablesst_index contains
the offset of a data item in the data file (tablesst_data). The tablesst_data
contains all the rows in the table.

Behavior Analysis. Cassandra enables checksum verification on user
data only as a side effect of enabling compression. Therefore, we con-
duct two experiments in Cassandra — one with compression disabled for
user tables and the other with compression enabled.

Figure 3.11(a) shows the results for block corruptions and block er-
rors when compression is disabled for user sstables. When compression
is turned off, corruptions are not detected on user data in tablesst_data
(third row of local behavior for read workloads in Figure 3.11(a)). On
a read query, a coordinator node collects and compares digests (hashes)
of the data from R replicas [48]. If the digests mismatch, conflicts in the
values are resolved using a latest timestamp wins policy. If there is a tie
between timestamps, the lexically greatest value is chosen and installed
on other replicas [75]. As shown in Figure 3.12, on R = 3, if the corrupted
value is lexically greater than the original value, the corrupted value is re-
turned to the user and the corruption is propagated to other intact replicas
(third row of global effect for R = 3 read workload when corrupted with
junk). On the other hand, if the corrupted value is lexically lesser, it fixes
the corrupted node (third row of global effect for R = 3 read workload
when corrupted with zeros). Reads to a corrupted node with R = 1 al-
ways return corrupted data. Faults in tablesst_index cause query failures

(tifth row of global effect for read workloads). In most cases, user-visible



47

Workload: Read (R=1) Workload: Read (R=3) Workload: Update (W=2)
Local Behavior Global Effect Local Behavior Global Effect Local Behavior Global Effect

¢j cz|rewese ¢j czJrewese ¢j cz|rewese ¢j cz|rewese ¢j cz|rewese ¢j czjrewese
FACAL] X FACAL] ORI XX tablesst_data.block_0
AF1ES ) ¥ AF1ES tablesst_data.metadata
AF1ES X AF1ES tablesst_data.userdata
AF1ES ¥ AF1ES tablesst_data.tail
AF1ES X AF1ES X|X tablesst_index
AL AL tablesst filter
plgig plgid Blg181XIX tablesst statistics.0
X|g|8 pa%) olg|e % X|g|818|8] £ tablesst_statistics.1
glglg glglg tablesst summary
(a) sstable compression = off
X K tablesst_data
%8@ %% K tablesst_index

glg|g glg|g glg|g K tablesst_filter
gig|g gig|8 gig|g K tablesst_statistics.0
X[X|2 XD X[X|# QD X|2|2]28128]| [¥ tablesst_statistics.1
glg|g glg|g glo|gig|s tablesst_summary
Arar Arar CAPAFARSES tablesst_compinfo

(b) sstable compression = on

Legend: Local Behavior

No Detection/Recovery [\| Partial Crash Crash
[[1gnore Faulty Data Xl Log Error ElRetry
[ Internal Redundancy [E]Not Applicable

Legend: Global Effect

Corruption Data loss Unavailable
Write Unavailable Read Unavailable & Query Failure
Reduced Redundancy [ ] Correct O Not Applicable

Figure 3.11: Cassandra Behavior: Block Corruptions and Errors. (a) and
(b) show system behavior in the presence of block corruptions (corrupted with either junk
(cj) or zeros(cz)), read errors (re), write errors (we), and space errors (se) when sstable
compression is turned off and turned on, respectively.

problems that are observed in R = 1 configuration are not fixed even
when run with R = 3.

Figure 3.11(b) shows the results when compression is enabled for user
sstables. When compression is enabled, Cassandra maintains a check-
sum for every compressed block. When the value in the compressed data
gets corrupted, decompression fails due to a mismatch between the stored

checksum and computed checksum of the decompressed data. Thus, cor-



48

Client Coordinator Other
Replica Replicas
tablesst data.userdata
corrupt key value
key Vil
read R=3 digest request
—_—

digest response

digests mismatch -
read request

- m e —————

N —
.E, read response | _
-— =
key  value e,
. : 155}
resolve conflict -7
key ViR =
key value ]
. =~
lexically § greater . :
key J msert |
corrupted ey VR -

4

Figure 3.12: Cassandra Corruption Propagation. The figure shows how the
read-repair protocol in Cassandra propagates corrupted user data in a sstable file from a
corrupted replica to other intact replicas.

ruptions to tablesst_data.userdata are detected and results in failures of
table scans and point queries to the data within this block (first row for
read workloads in Figure 3.11(b)); point queries to the data not in this cor-
rupted block are not affected. The corruption is not fixed automatically
even when queries are run with R = 3 and results in query failures. Since
we do not alter the compression feature of system schema sstables, we do
not repeat this experiment for these structures.

Bit Corruptions. Figure 3.13 shows the behavior of Cassandra when bit
corruptions are injected and compression is enabled for user sstables. In
Cassandra, the read path involves accessing several on-disk structures.

For a point query of a key, first, the key is queried in the Bloom filter (ta-



49

Local Global
glg tablesst_filter
g18||0 |tablesst summary.key
XIX| || tablesst_index.keylength
XIX| || tablesst_index.offset
218| IO tablesst_index.key
219 ¥ tablesst data.value
219 ¥ tablesst data.valuelength
#18] |0I0] tablesst_data.keylength
gl1g| ] ]tablesst datakey
RIR3 RIR3

Legend: Local Behavior

No Detection/Recovery [N Partial Crash Crash
[MIgnore Faulty Data [X]Log Error HRetry
[l Internal Redundancy ] Not Applicable

Legend: Global Effect

&) Corruption Data loss Unavailable
Write Unavailable Read Unavailable & Query Failure
Reduced Redundancy []Correct I Not Applicable

Figure 3.13: Cassandra Behavior: Bit Corruptions. The figure shows the be-
havior in the presence of bit corruptions when sstable compression is off; the annotations
on the bottom indicate the read quorum (R1 - quorum of 1, R3 - quorum of 3).

blesst_filter); if the filter indicates the key’s presence, then the table sum-
mary (tablesst_summary) and table index (tablesst_index) are accessed to
determine the offset of the entry in the data file (tablesst_data). Finally,
the value is read from the data file. With R = 1, a single bit corruption in
the filter causes a data loss (first row of global effect for R = 1 read work-
load in Figure 3.13). Similarly, a single bit corruption in the key field in the
table summary results in a data loss (second row of global effect for R =1
read workload). With R = 3, the above two problems are masked (first
and second rows for R = 3 read workload). A flipped bit in the keylength
and offset of the table index results in query failures with both R = 1 and
R = 3 (third and fourth rows of global effect). With R = 1, a corrupted



50

key in the table index leads to a silent data loss (fifth row of global effect).
When a key K in the index is corrupted to K’, a table scan with R = 3,
results in a surprising outcome: first, the scan result contains a spurious
row with key K’ with the same value as the one for K; furthermore, the
spurious row is propagated to all other nodes (fifth row of global effect
with R = 3). A single corrupted bit in valuelength or the value in the table
data results in silent corruption and corruption propagation in R = 1 and
R = 3, respectively.

Introducing bit corruptions into various fields within a block helps
uncover interesting behaviors in Cassandra not discovered using block-
corruption experiments. For example, consider the fields keylength, off-
set, and key which are a part of tablesst_index. When we inject block cor-
ruptions in fablesst_index (fifth row in Figure 3.11(a)), it results in query
failures. In contrast, when we flip a bit in the key of tablesst_index, it re-
sults in the surprising outcome where a spurious row is silently propa-
gated to all other nodes (fifth row in Figure 3.13). Similarly, while a block
corruption in tablesst_summary results in a correct behavior (last row in
Figure 3.11(a)), a bit flip in key of tablesst_summary results in a data loss
(second row for R = 1 in Figure 3.13).

3.3.4 Kafka

Kafka is a distributed persistent message queue in which clients can pub-
lish and subscribe to messages. Kafka is run as a cluster consisting of a
leader and a set of followers. The system stores streams of messages in
categories called topics; a topic can have zero or more consumers that
subscribe to it. Each message in a topic consists of a key, a value, and a
timestamp.

On-disk Structures: The on-disk structures of Kafka are shown in Fig-
ure 3.14. Incoming messages are appended to a log file. Each message

is checksummed and is associated with a message id and an optional



51

msgl | log |msg2 | log
id | offset | id | offset

index file

log file | msg 1| msg 2|

message
.| valid |check key msg
G bytes [-sum length key length [™58

Logical structures:
log.header first block of log file
log.other other blocks in log file
index index file blocks
meta file containing broker information
recovery_checkpoint | Last message flushed to disk
repl checkpoint Last message replicated to slaves

repl_checkpoint_tmp | Renamed to repl-ckp after updating

Figure 3.14: Kafka On-disk Structures. The figure shows the on-disk format of
the files and the logical data structures in Kafka.

key. Kafka maintains an index file which indexes messages to byte offsets
within the log. Important metadata structures (such as the node iden-
tifier) are maintained in a file called meta. The replication_checkpoint and
recovery_checkpoint structures indicate how many messages are replicated
to followers so far and how many messages are flushed to disk so far,
respectively. The replication offsets are updated by first writing to a tem-
porary file (repl_checkpoint_tmp) and then renaming it to the final file.

Behavior Analysis. Figure 3.15 shows the behavior of Kafka when block
corruptions and block errors are introduced into different structures. On
read and write errors, Kafka mostly crashes. Figure 3.16 shows the sce-
nario where Kafka can lose data and become unavailable for writes. When
a log entry is corrupted on the leader, it locally ignores that entry and
all subsequent entries in the log (first and second rows of local behavior



52

Local Behavior Global Effect

Corrupt Errors Corrupt Errors
junk zero|read writespace junk zero|read writespace

XX & 8_8 XXl | ¢ |logheader

: LX) : : : P4 log.other
I XX ! E L A . |index
X XX XXX Y Xy xixixp i |meta
X XX XX X : : ; ! + |recovery_checkpoint
XNDKNIXKN P OXOXOH] F | & repl_checkpoint

: : XXX X L : T 1D X1 ¥] repl_checkpoint_tmp

(i)Workload: Read

Corrupt Errors Corrupt Errors
junk zero|read writespace junk zero|read writespace

’ XX : ] P4V d i _|log.header

L EXIXXIXX] DD IDX|L 4[4 4] log.other
I XX ! E L A *_|index
XXX XX X] M E4PdPdpdrdvd N i | meta
X XK XX X| i = = i i i | recovery_checkpoint
XXX | [OZ DX Z] || repl_checkpoint

T T IXXIXX]| L T T 1D XD x| repl_checkpoint_tmp

LFLFLFLFLF LFLFLFLFLF
(ii)Workload: Update
Legend: Local Behavior

No Detection/Recovery [\ Partial Crash Crash
[ Ignore Faulty Data [X] Log Error HRetry
[l Internal Redundancy ] Not Applicable

Legend: Global Effect

&) Corruption Data loss Unavailable
Write Unavailable Read Unavailable [@ Query Failure
Reduced Redundancy [ ] Correct [ Not Applicable

Figure 3.15: Kafka Behavior: Block Corruptions and Errors. The figure
shows system behavior in the presence of block corruptions and block errors.

boxes for both workloads in Figure 3.15), resulting in a data loss. The
leader then instructs the followers to do the same. On receiving this in-
struction from the leader, the followers check whether the leader’s offset



53

Client Leader Followers
log corrupted at msg i; truncate
log from i to log end;

1
I
I
I
2 ! . setend offset=1-1; 1
é : read i li N ’ L—»assert(i-l >=
: data loss my.end offset)
| wite(W=2) crash
1 —
v failure
-

Figure 3.16: Kafka Data Loss and Write Unavailability. The figure shows
the scenario where Kafka loses data and becomes unavailable for writes due to a corrup-
tion.

is greater than their checkpointed offset. If this condition does not hold,
the followers hit a fatal assertion and simply crash. Once the followers
crash, the cluster becomes unavailable for writes (first and second rows
of global effect for write workload).

We conducted another experiment where the corruption on the leader
occurs before the followers checkpoint the message offsets to their recovery-
offset-checkpoint file. If the followers have not checkpointed the entries
(that have been truncated on the leader), they truncate the entries as in-
structed by the leader, leading to a silent permanent data loss. In this
case, the followers continue to operate without crashing.

Corruption in index is fixed using internal redundancy (third row of
local behavior for both workloads). Faults in the replication_checkpoint of
the leader result in a data loss (sixth row of global effect for read work-
load) as the leader is unable to record the replication offsets of the fol-
lowers. Kafka becomes unavailable when the leader cannot read or write

replication_checkpoint and replication_checkpoint_tmp, respectively.

Bit Corruptions. Figure 3.17 shows the behavior of Kafka when bit cor-
ruptions are injected. On a bit flip in any field of the message log, the
node truncates the corrupted message and all subsequent messages. If



54

Local Global

X:X| | £ 4| meta.brokerid

X:X| |4 4| meta.version

f | repl_checkpoint.startoffset

| repl_checkpoint.endoffset
recovery_ checkpoint.startoffset
K X|| | |recovery checkpoint.endoffset
’ . _|log.messageid

log.validbytes

log.checksum

log.keylength

log.key

log.messagel ength
log.message

index.messageid
index.logoffset

D, 1 A
X\ IO/
D i
D,

LF LF
Legend: Local Behavior

No Detection/Recovery [N Partial Crash Crash
[MIgnore Faulty Data [X]Log Error HRetry
[l Internal Redundancy ~ []Not Applicable

Legend: Global Effect

&) Corruption Data loss Unavailable
Write Unavailable Read Unavailable & Query Failure
Reduced Redundancy []Correct I Not Applicable

Figure 3.17: Kafka Behavior: Bit Corruptions. The figure shows system
behavior when bit corruptions are injected during a read workload.

this corruption occurs on the follower, the leader supplies the truncated
messages to the followers. The same single bit flip on the leader leads to
a silent data loss. A bit flip in the replication offsets sometimes causes a

data loss.



55

database file

log meta meta btree
header | blockl | block2 nodes

metablock - points to the latest version of the btree

Logical structures:

db.database_header db header block of database file
db.internal_btree_nodes internal btree nodes of database file
db.unused_metablocks unused metablocks of database file
db.transaction_head transaction start blocks of database file
db.transaction_body user data blocks of database file
db.transaction_tail remaining user data blocks of database file
db.metablock metablocks of database file

Figure 3.18: RethinkDB On-disk Structures. The figure shows the on-disk
format of the files and the logical data structures in RethinkDB.

3.3.5 RethinkDB

RethinkDB is a distributed database suited for pushing query results to
real-time web applications [146]. RethinkDB uses the Raft consensus pro-
tocol to maintain cluster metadata. It relies on the underlying storage
stack to handle data integrity and does not maintain checksums for user
data.

On-disk Structures: RethinkDB uses a persistent B-tree to store all data.
Transactions are stored at the leaf nodes of the tree; a transaction consists
of three blocks: db.transaction_head, db.transaction_body, and db.transaction_tail.eps.
metablocks in the B-tree point to the data blocks that constitute the cur-
rent and the previous version of the database. On an update, new data
blocks are first carefully written and flushed to disk. Then, the metablock
with checksums is updated to point to the new data blocks, thus enabling
atomic updates. The B-tree data blocks and the metablocks are part of a



56

Local Behavior Global Effect
Corrupt Errors Corrupt Errors
junk zero|read Wr|tespace junk zero|read ertespace
XXX XX X]| || XKL db.database_header
XXX XX X] ISV AP eV dP eV 4 i | db.internal _btree_nodes
@ 318 BIX X|X: : : v XXX XL | db.unused _metablocks
@88 BIX:X X x| i |db.transaction_head
2818 8IX:X P4 i _|db.transaction_body
@8 .BIX:X X XX XX X]|db.transaction_tail
HITHIE3ES XXX Xl + |db.metablock

( i)Workload: Read

Corrupt| Errors Corrupt| Errors
junk zero|read ertespace junk zero|read ertespace

XXX XX X] i Fardlavdldv s dbdatabase_header
XXX XX X]| 2424 PdPdPdPd N i _|db.internal_btree nodes
2 8|8 BIX XX | | p e | 1db.unused _metablocks
X g|g: BIX:X]| ! s P drd N i db.transaction_head
2. 8|8 8IX X]| ¢ i i rdrd N db.transaction_body
2:.8|8 BIXX[X:X x=x PaPdldvivd X db.transaction _tail
Pl XXX X yavavard db.metablock

LFLFLFLFLF LFLFLFLFLF
(ii)Workload: Update

Legend: Local Behavior

No Detection/Recovery [\ Partial Crash Crash
[ Ignore Faulty Data [X] Log Error HRetry
[ Internal Redundancy ] Not Applicable

Legend: Global Effect

&) Corruption Data loss Unavailable
Write Unavailable Read Unavailable [@ Query Failure
Reduced Redundancy [ ] Correct [ Not Applicable

Figure 3.19: RethinkDB Behavior. The figure shows system behavior when
faults are injected in various on-disk logical structures.

single database file, as shown in Figure 3.18.

Behavior Analysis. Figure 3.19 shows the behavior when block corrup-

tions and block errors are introduced in RethinkDB. On any fault in database



57

Client Leader Followers
L m RTE m
M1 M2 Vi V2 M1 M2 Vi V2

—
v v v
db.metablock M2 corrupted
read V2 ignore transaction

Time

¢ —————— - — -

data loss contact followers
—
return V'/

Figure 3.20: RethinkDB Data Loss. The figure shows the scenario where Re-
thinkDB exhibits data loss due to a corruption.

header and internal B-tree nodes, RethinkDB simply crashes (first and
second rows of local behavior for both workloads in Figure 3.19). If the
leader crashes, a new leader is automatically elected. RethinkDB relies
on the file system to ensure the integrity of data blocks; hence, it does
not detect corruptions in the transaction body and tail (fifth and sixth
rows of local behavior). When these blocks of the leader are corrupted,
RethinkDB silently returns corrupted data (fifth and sixth rows of global
effect for the leader).

Figure 3.20 depicts how data is silently lost when the transaction head
or the metablock pointing to the transaction is corrupted on the leader
(last row of global effect for the leader). Even though there are intact
copies of the same data on the followers, the leader does not fix its cor-
rupted or lost data, even when we perform the reads with the majority
option. When the followers are corrupted, they are not fixed by contact-
ing the leader. Although this does not lead to an immediate user-visible
corruption or loss (because the leader’s data is the one finally returned),

it does so when the corrupted follower becomes the leader in the future.



58

log file
log wiredtiger | | collection o i | ouser ...
header |[file properties information | °P data
collections | header meta | gg | user ..,
block data

Logical structures:
collections.header header of collections file
collections.metadata | meta data blocks of collections file
collections.data user data blocks of collections file
index id and offsets to collections file
journal.header header blocks of journal file
journal.other other blocks of journal file
storage bson storage engine information
wiredtiger wt information on collections and index file

Figure 3.21: MongoDB On-disk Structures. The figure shows the on-disk
format of the files and the logical data structures in MongoDB.

3.3.6 MongoDB

MongoDB is a popular document-oriented database that uses JSON-like
documents [101]. MongoDB provides high availability using replica sets.
It uses primary-backup replication with each replica set consisting of a
primary and a set of secondaries. All writes and reads are done on the
primary by default. When a primary fails, the replica set automatically
elects its new primary. MongoDB supports multiple storage engines. For
our experiments we use WiredTiger [105] as the storage engine.

On-disk Structures: Figure 3.21 shows the different on-disk files in Mon-
goDB. When an item is inserted or updated, it is added to the journal and
the in-memory database is updated. If the write operation specifies the
option j as true, WiredTiger forces an fsync of the journal. WiredTiger

uses multi-version concurrency control, and periodically a consistent view



59

Local Behavior Global Effect
Corrupt Errors Corrupt Errors
junk zero|read writespace junk zero|read Wr|tespace
XXX XX X] T |Eavdrav v av 4 collections.header
XiXIX XX X] W IE4PdPaPdPraPd e t | collections.metadata
XXX XX X] I IEaT AP av dv av 4 i | collections.data
XXX X|X: X] e IEardr ey ¢ /,/ : : |index
XXX XX XX X| | ||[Xi4]|LXxX XXX |journal.header
LT TIXXIXXINN L | XXX XD journal .other
XXX XX X] I ardrevd i |storage_bson
XXX XX X[X:X| || XX LY X i | wiredtiger_wt

(i)Workload: Read

Corrupt Errors Corrupt Errors
junk zero|read writespace junk zero|read writespace
XIXIX XX X] | EdPdPdvdP P d I i | collections.header
XXX X|X X] | EdPdP PP P d I i | collections.metadata
XXX XX X] W | EdPdPavdP P d I i | collections.data
XXX X|X:X]| T ILavaVavavav 4 + |index
XXIX XX XIX X Jav Vv v avdvevil journal.header
T EEES x:x NN C XXX XXX journal .other
XXX XXX L4 dvdrdvd i | storage _bson
XXX XX XX XL | (XA XX XL T wiredtiger_wt

LFLFLFLFLF LFLFLFLFLF
(ii) Workload: Update
Legend: Local Behavior

No Detection/Recovery [\ Partial Crash Crash
[ Ignore Faulty Data [X] Log Error HRetry
[l Internal Redundancy ] Not Applicable

Legend: Global Effect

&) Corruption Data loss Unavailable
Write Unavailable Read Unavailable [@ Query Failure
Reduced Redundancy [ ] Correct [ Not Applicable

Figure 3.22: MongoDB Behavior. The figure shows the system behavior when
faults are injected in various on-disk logical structures in MongoDB.

of the in-memory data is checkpointed to the collections file and index file.

A master WiredTiger file contains information on the latest checkpoint



60

files. The storage engine information is stored in a storage_bson file.

Behavior Analysis. Figure 3.22 shows the results for block corruptions
and block errors in MongoDB. MongoDB simply crashes on most errors,
leading to reduced redundancy. A new leader is automatically elected
if the current leader crashes. MongoDB employs checksums for all files;
corruption in any block of any file causes a checksum mismatch and an
eventual crash, resulting in reduced redundancy.

One exception to the above is when blocks other than journal header
are corrupted. In this case, MongoDB detects and ignores the corrupted
blocks (sixth row of local behavior in Figure 3.22); then, the corrupted
node truncates its corrupted journal, descends to become a follower, and
finally repairs its journal by contacting the leader. In a corner case where
there are space errors while appending to the journal, queries fail (sixth
row of global effect in Figure 3.22).

3.3.7 LogCabin

LogCabin provides a replicated and consistent data store that serves as a
place for other distributed systems to maintain their core metadata such
as configuration settings. LogCabin implements state machine replica-
tion and uses the Raft consensus protocol [92]. In LogCabin, all reads
and writes go through the leader by default.

On-disk Structures: LogCabin implements a segmented log [153] to store
data; each segment is a file on the file system. The format of a segment
file is shown in Figure 3.23. There are two types of segment files—the
open segment and the closed segment. The open segment is the current
file to which data is appended. When the open segment is fully utilized,
it is closed and a new segment is opened. Two metadata files (metadatal
and metadata?) maintain the Raft metadata and information about the log.

The metadata files are updated alternately; when a metadata file is par-



61

segmented log files | seg log log
(open or closed) | header | entryl | entry2
log entry metadata file
check entry entry check Raft entries
-sum | length data -sum | metadata | start

Logical structures:

open_segment.header segment header of an open segment
open_segment.other blocks other than the header

closed segment all blocks of a closed segment
metadatal metadata file - first copy

metadata2 metadata file - second copy

Figure 3.23: LogCabin On-disk Structures. The figure shows the on-disk
format of the files and the logical data structures in LogCabin.

tially updated or corrupted, LogCabin uses the other metadata file that
contains slightly older metadata.

Behavior Analysis. Figure 3.24 shows the behavior when block corrup-
tions and block errors are introduced in LogCabin. LogCabin crashes on
all read, write, and space errors. Similarly, if an open segment file header
(tirst row in Figure 3.24) or blocks in a closed segment (third row in the
figure) are corrupted, LogCabin simply crashes. LogCabin recognizes
corruption in any other blocks in an open segment using checksums, and
reacts by simply discarding and ignoring the corrupted entry and all sub-
sequent entries in that segment (second row of local behavior). If a log
pointer file is corrupted, LogCabin ignores that pointer file and uses the
other pointer file (fourth and fifth rows of local behavior).

In the above two scenarios, the leader election protocol ensures that
the corrupted node does not become the leader; the corrupted node be-

comes a follower and fixes its log by contacting the new leader. This en-



62

Local Behavior Global Effect

Corrupt| Errors Corrupt| Errors
junk zero|read writespace junk zero|read writespace
XXX XX XIX XX X| | X K| XX XX XL ¥]|open_segment.header
X i i L XXX XXX open_segment.other
X X! Xi\x & ! i |closed_segment
i N . 7
4

N\

E/ /E/ /E/ metadatal
i i KX XX K] metadata?
(i)Workload: Read

Corrupt| Errors Corrupt| Errors
junk zero|read writespace junk zero|read writespace

XIX[XIX[XXIXXIXIX] [ZTHTX XX F[X X F] open_segment.header

XXX
xX[x] X

XX
XX
XX

X[XIXIX
X[X|Tx

DL EXEXEX: XXX X Xlx xlx x| open_segment.other
XEIXEIXe b e b e qke v Jclosed segment
T HXEXIXEXIX X | (XXX Y K] metadatal
XXX XXX X Xy xlx: x| metadata?

LFLFLFLFLF LFLFLFLFLF
(ii)Workload: Update
Legend: Local Behavior

No Detection/Recovery [N Partial Crash Crash
[M1gnore Faulty Data [X] Log Error HRetry
[l Internal Redundancy ~ [C]Not Applicable

Legend: Global Effect

Corruption Data loss Unavailable
Write Unavailable Read Unavailable [@ Query Failure
Reduced Redundancy [] Correct [ Not Applicable

Figure 3.24: LogCabin Behavior. The figure shows system behavior when faults
are injected in various on-disk logical structures.



63

log file current
log meta | 1o datal e latest
header | blocks manifest
sst data meta
sst file header block blocks fooex

Logical structures:

current points to the latest manifest

manifest information on sst files in the LSM tree
log.block 0 | block 0 of log file

log.meta meta data blocks of log file

sst.meta meta data blocks of sst file

sst.other remaining blocks of sst file

Figure 3.25: CockroachDB On-disk Structures. The figure shows the on-disk
format of the files and the logical data structures in CockroachDB.

sures that in any fault scenario, LogCabin would not globally corrupt or
lose user data. Although truncating the open segment does not result in a
data loss in our experiments, it is possible for LogCabin to lose data in the
presence of lagging nodes or data corruptions on more than one node, as

shown by our follow-on work [10].

3.3.8 CockroachDB

CockroachDB is a distributed SQL database built atop a transactional and
strongly-consistent key-value store. It is built to survive disk, machine,
rack, and data-center failures. CockroachDB uses Raft and so as long as
a majority of replicas remain available, the system can continue to make
progress. It supports strongly-consistent ACID transactions and also pro-
vides an SQL-like query language [41].

On-disk Structures: Figure 3.25 shows the different on-disk files in Cock-
roachDB. CockroachDB uses a tuned version of RocksDB for its local stor-



64

Local Behavior Global Effect

Corrupt| Errors Corrupt] Errors
junk zero|read writespace junk zero|read writespace
XXX XX X]| ' PP 4P 4P aP 410 '

1 i A AA A4 4 1 1 current
XXX X| | XX XX XY XY K] manifest

HEEE ) log.block_0

! ! E E E ! t |log.meta
XEX XEX @E E /E/ /E/ /E/ sst.meta
XX

XIX *:* *:* X XX XL X sst.other
(i)Workload: Read

Corrupt| Errors Corrupt| Errors
junk zero|read writespace junk zero|read writespace

XX XX
X|X[s[sfX

XXX XX X]| ; VAP AV P 4V aP 410 i | current
X XX XX XX X]|X: X &&é/ X XX x| manifest

X BIX BIX B] i : : i i i |log.block 0
sasolgdl Il 1 1 Lol llogmea

* ¢ *E¢ XXX XIX: X @E @E XXX Xl x]sst.meta
XXX XX XX XX X]| | X XX XY XY XL K] sst.other
LFLFLFLFLF LFLFLFLFLTF

(ii)Workload: Update
Legend: Local Behavior

No Detection/Recovery [N Partial Crash Crash
[MIgnore Faulty Data [X] Log Error [ERetry
[ Internal Redundancy [ Not Applicable

Legend: Global Effect

&) Corruption Data loss Unavailable
Write Unavailable Read Unavailable [@ Query Failure
Reduced Redundancy [[] Correct I Not Applicable

Figure 3.26: CockroachDB Behavior. The figure shows the system behavior
when faults are injected in various on-disk logical structures.



65

age; the storage engine is an LSM tree that appends incoming data to a
persistent log; the in-memory data is then periodically compacted to cre-
ate the sst files. The manifest file lists the set of sst files that make up a
particular level in the LSM tree and the current file points to the latest

manifest.

Behavior Analysis. Figure 3.26 shows the results for block corruptions
and block errors in CockroachDB. Most of the time, CockroachDB sim-
ply crashes on corruptions and errors on any data structure, resulting in
reduced redundancy. Faults in the first block of the log file on the leader
lead to total cluster unavailability as some followers also crash follow-
ing the crash of the leader (third row of global effect). Corruptions and
errors in a few other log metadata blocks can cause data loss where Cock-
roachDB silently returns zero rows (fourth row of global effect). Corrup-
tions in sst files cause queries to fail (fifth row of global effect) with error
messages such as table does not exist or db does not exist. Overall, we found
that CockroachDB has many problems in fault handling. However, the
reliability may have improved in the later versions because CockroachDB

was still under active development at the time of our experiments.

3.4 Observations across Systems

We now present a set of observations with respect to data integrity and
error handling across all eight systems.

3.4.1 Systems employ diverse data integrity strategies

Table 3.2 shows different strategies employed by modern distributed stor-
age systems to ensure data integrity. As shown, systems employ an array
of techniques to detect and recover from corruption. The table also shows
the diversity across systems. On one end of the spectrum, there are sys-



66

a
¥ «© Qo <
=3 SREE
v c < I

ax g §EPQ Y

o 9 92] - O o0 9

L O < © q_)z o O
Technique MN UMK A0
Metadata Checksums | P / / VPV VV
Data Checksums P A \/$ vV VVYV
Background Scrubbing v
External Repair Tools | +/ V VooV
Snapshot Redundancy | P* P* P*

P - applicable only for some on-disk structures; a - Adler32 checksum
* - only for certain amount of time; $ - unused when compression is off

Table 3.2: Data Integrity Strategies. The table shows techniques employed by
modern systems to ensure data integrity of user-level application data.

tems that try to protect against data corruption in the storage stack by
using checksums (e.g., ZooKeeper, MongoDB, CockroachDB) while the
other end of spectrum includes systems that completely trust and rely
upon the lower layers in the storage stack to handle data integrity prob-
lems (e.g., RethinkDB and Redis). Despite employing numerous data in-
tegrity strategies, all systems exhibit undesired behaviors.

Sometimes, seemingly unrelated configuration settings affect data integrity.
For example, in Cassandra, checksums are verified only as a side effect of
enabling compression. Due to this behavior, corruptions are not detected
or fixed when compression is turned off, leading to user-visible silent cor-
ruption.

We also find that a few systems use inappropriate checksum algorithms.
For example, ZooKeeper uses Adler32 which is suited only for error de-
tection after decompression and can have collisions for very short strings [95].
In our experiments, we were able to inject corruptions that caused check-

sum collisions, driving ZooKeeper to serve corrupted data. We believe



67

that it is not unreasonable to expect metadata stores like ZooKeeper to
store small entities such as configuration settings reliably. In general, we
believe that more care is needed to understand the robustness of possible
checksum choices.

3.4.2 Faults are often undetected

We find that faults are often locally undetected. Sometimes, this leads to
an immediate harmful global effect. For instance, in Redis, corruptions in
the append-only file of the leader are undetected, leading to global silent
corruption. Also, corruptions in the rdb of the leader are also undetected
and, when sent to followers, cause them to crash, leading to unavailability.
Similarly, in Cassandra, corruption of tablesst_data is undetected which
leads to returning corrupted data to users and sometimes propagating it
to intact replicas. Likewise, RethinkDB does not detect corruptions in the
transaction head on the leader which leads to a global user-visible data
loss. Similarly, corruption in the transaction body is undetected leading
to global silent corruption. The same faults are undetected also on the fol-
lowers; a global data loss or corruption is possible if a corrupted follower
becomes the leader in future.

While some systems detect and react to faults purposefully, some react
to faults only as a side effect. For instance, ZooKeeper, MongoDB, and
LogCabin carefully detect and react to corruptions. On the other hand,
Redis, Kafka, and RethinkDB sometimes react to a corruption only as a
side effect of a failed deserialization.

3.4.3 Crashing is the most common reaction

We observe that crashing is the most common local reaction to faults (as is ev-
ident from the abundance of crash symbols in local behaviors of the fig-

ures in behavior analysis). Many systems do reliably detect faults (e.g.,



68

by using checksums for most of their on-disk data structures). However,
in most cases, they simply crash on detecting a fault instead of using re-
dundancy to recover from the fault, resulting in reduced redundancy.

Although crashing of a single node does not immediately affect clus-
ter availability, total unavailability becomes imminent as other nodes also
can fail subsequently. Also, workloads that require writing to or reading
from all replicas will not succeed even if one node crashes. Moreover,
since storage faults could be persistent, simply restarting does not help;
the node would repeatedly crash until manual intervention fixes the un-
derlying problem. However, such manual intervention can be often error-
prone and cumbersome. We also observe that nodes are more prone to
crashes on errors than corruptions.

We also observe that failed operations are rarely retried. While retries
help in several cases where they are used, we observe that sometimes in-
definitely retrying operations may lead to more problems. For instance, when
ZooKeeper is unable to write new epoch information (to epoch_tmp) due
to space errors, it deletes and creates a new file keeping the old file de-
scriptor open. Since ZooKeeper blindly retries this sequence and given
that space errors are sticky, the node soon runs out of descriptors and
crashes, reducing availability.

Overall, although crashing may seem like a good strategy to employ, in
a distributed system, there are opportunities to recover from local faults

using other intact replicas.

3.4.4 Redundancy is underutilized

Contrary to the widespread expectation that redundancy in distributed
systems can help recover from single faults, we observe that even a single
error or corruption can cause adverse cluster-wide problems such as total
unavailability, silent corruption, and loss or inaccessibility of inordinate

amount of data. In many cases, almost all systems do not use redundancy



69

. Scope
Structures Fault Injected Affected
Redis:
appendonlyfile.metadata any All*
appendonlyfile.userdata read, write errors All*
Cassandra:
tablesst_data.block_0 corruptions (junk) First Entry®
tablesst_index corruptions SSTable®
schemasst_compressioninfo| corruptions, read error Table”
schemasst_filter corruptions, read error Table®
schemasst_statistics.0 corruptions, read error Table”
Kafka:
log.header corruptions Entire Log®
log.other corruptions, read error | Entire Log®”
replication_checkpoint corruptions, read error All®
replication_checkpoint_tmp write errors All*
RethinkDB:
db.transaction_head corruptions Transaction®
db.metablock corruptions Transaction®

5. data loss # -inaccessible *- starting from corrupted entry

Table 3.3: Scope Affected. The table shows the scope of data (third column) that
becomes lost or inaccessible when only a small portion of data (first column) is faulty.

as a source of recovery; they miss opportunities to use other intact replicas
for recovering. Notice that all the problems that we discover in our study
are due to injecting only a single fault in a single node at a time. Given that
the data and functionality are replicated, ideally, none of the undesirable
behaviors should arise.

A few systems (MongoDB and LogCabin) automatically recover from
some (not all) data corruptions by utilizing other replicas. Specifically, on
encountering a corrupted entry, these systems locally ignore faulty data.
Then, the leader election algorithm ensures that the node where a data

item has been corrupted and hence ignored does not become the leader.



70

As a result, the corrupted node eventually recovers the corrupted data by
fetching it from the current leader. In many situations, even these systems
do not automatically recover by utilizing redundancy. For instance, Log-
Cabin and MongoDB simply crash when closed segments or collections
are corrupted, respectively.

We also find that an inordinate amount of data can be affected when only a
small portion of data is faulty. Table 3.3 shows different scopes that are af-
fected when a small portion of the data is faulty. The affected portions can
be silently lost or become inaccessible. For example, in Redis, all user data
can become inaccessible when metadata in the append-only file is faulty
or when there are read and write errors in append-only file data. Sim-
ilarly, in Cassandra, an entire table can become inaccessible when small
portions of data are faulty. Kafka can sometimes lose an entire log or
all entries starting from the corrupted entry until the end of the log. Re-
thinkDB loses all the data updated as part of a transaction when a small
portion of it is corrupted or when the metablock pointing to that transac-
tion is corrupted.

In summary, we find that redundancy is not effectively used as a source
of recovery and the general expectation that redundancy can help avail-
ability of functionality and data is not a reality.

3.4.5 Crash and corruption handling are entangled

We find that in many systems, the detection and recovery code does not
try to distinguish two fundamentally distinct problems: crashes and data
corruption.

Storage systems implement crash-consistent update protocols (i.e., even
in the presence of crashes during an update, data should always be re-
coverable and should not be corrupted or lost) [22, 127, 129]. To do this,
systems carefully order writes and use checksums to detect partially up-
dated data or corruptions that can occur due to crashes.



71

Kafka Message Log
Append(log; message 2)

0 1 . 2
. . Checksum mismatch
\ : : Action: Truncate log at 1
Checksum  Data Message 2 partially updated Lose uncommitted data

(a) Handling a corruption due to a crash

Disk corruption on 1

0 . 1 ; 2
I . ! I Checksum mismatch

Action: Truncate log at 0

Lose committed data!
Message 1 corrupted

(b) Handling a disk corruption

Figure 3.27: Crash and corruption handling entanglement in Kafka. (1)
shows how a crash during an update causes a checksum mismatch; in this case, the par-
tially updated message is truncated. (b) shows the case where Kafka treats a disk corrup-
tion as a signal of a crash and truncates committed messages, leading to a data loss.

A checksum mismatch for a piece of data can occur due to two distinct
reasons. First, a crash could have occurred during the insertion of a data
item and thus cause a checksum mismatch for the partially appended
item. Second, a storage corruption can cause a checksum mismatch after
the data has been successfully inserted. However, surprisingly, we find
that most systems conflate these two cases: they always treat a checksum
mismatch as a signal of a crash. On detecting a checksum mismatch due
to corruption, all systems invariably run the crash recovery code (even
if the corruption was not actually due to crash but rather due to a real
corruption in the storage stack), ultimately leading to undesirable effects
such as data loss.

We illustrate this problem by using Kafka as an example. Figure 3.27
shows how crash and corruption handling are entangled in Kafka. As
shown, all incoming messages are checksummed and appended to the



72

message log. Figure 3.27(a) shows the case where a crash during the
append of an message leaves that message partially updated, triggering
a checksum mismatch during recovery. The recovery action that Kafka
takes on a checksum mismatch is to truncate the message whose check-
sum mismatches and all subsequent messages. In this case, the mismatch is
caused due to a partial update; hence, it is safe to truncate the message
because the client has not been acknowledged of the update.

However, in contrast, consider the case shown in Figure 3.27(b); in this
case, the second message has been successfully committed and the client
has been acknowledged. Long after that, the disk block holding the first
message gets corrupted, causing a checksum mismatch. However, the re-
covery code wrongly treats this corruption as a signal of a crash; hence,
it truncates and loses committed messages 1 and 2. Since Kafka conflates
the handling of a disk corruption and a corruption due to a crash, the node
loses committed data. Similarly, ZooKeeper, on detecting a data corrup-
tion in log.transaction_tail, concludes that the system crashed during the
last transaction commit, and truncates the log.

Another typical example of this problem is RethinkDB. RethinkDB
does not use application-level checksums to handle corruption. How-
ever, it does use checksums for its metablocks to recover from crashes.
Whenever a metablock is corrupted, RethinkDB detects the mismatch in
metablock checksum and invokes its crash recovery code. The crash re-
covery code believes that the system crashed when the last transaction
was committing. Consequently, it rolls back the committed and already-
acknowledged transaction, leading to a data loss.

A few systems try to distinguish crashes from corruption. For exam-
ple, LogCabin uses the following logic to do so: if a block in a closed
segment (a segment that is full) is corrupted, it correctly flags that prob-
lem as a corruption and reacts by simply crashing. On the other hand,

if a block in an open segment (still in use to persist transactions) is cor-



73

rupted, it detects it as a crash and invokes its usual crash recovery pro-
cedure. Similarly, MongoDB also differentiates corruptions in collections
from journal corruptions in a similar fashion. Overall, even systems that
attempt to discern crashes from corruption do not always do so correctly.

The problem of crash-corruption entanglement is not specific to dis-
tributed systems but also is applicable in any storage system that uses a
log or a journal, and hence applicable to local file systems as well. We
discovered later that file-system developers have encountered a bug in
the ext4’s journaling layer related to how ext4 handles checksum mis-
matches [171]. If a transaction in the journal is corrupted, ext4 replays the
corrupted transaction and worse, stops processing the journal at the cor-
rupted transaction, discarding subsequent committed transactions. The
discarding of committed data is similar to the crash-corruption entan-
glement problem we discover. However, the best course of action that
a stand-alone file system can take is to notify the user of an error; on the
other hand, in a distributed system, there are multiple copies to recover
from.

There is an important consequence of entanglement of detection and
recovery of crashes and corruptions. During corruption (crash) recovery,
some systems fetch an inordinate amount of data to fix the problem. For in-
stance, when a log entry is corrupted in LogCabin and MongoDB, they
can fix the corrupted log by contacting other replicas. Unfortunately, they
do so by ignoring the corrupted entry and all subsequent entries until the
end of the log and subsequently fetching all the ignored data, instead of
simply fetching only the corrupted entry. Similarly, Katka followers also
fetch additional data from the leader instead of only the corrupted entry.



74

3.4.6 Local fault handling and global protocols interact

in unsafe ways

We find that local fault-handling behaviors and commonly used distributed
protocols such as leader election, read repair [51], and re-synchronization
interact in unsafe ways; such unsafe interaction leads to undesirable out-
comes such as propagation of corruption or data loss.

For instance, in Kafka, the local fault-handling behavior on a corrupted
node interacts unsafely with the leader election protocol, turning a local
data loss on the node into a global data loss. Kafka maintains a piece of
metadata that contains information about replicas that are in-sync called
the in-sync-replicas (ISR); any node in this set is guaranteed to contain all
the committed data and thus is eligible to become a leader. When a log
entry is corrupted on a Kafka node, it ignores the current and all subse-
quent entries in the log and truncates the log until the last correct entry
(as we discussed earlier). Ideally, now this node should not be part of the
ISR because it has lost some committed log entries. However, this node
is not removed from the ISR and and is incorrectly elected the leader.
Consequently, all further reads to the leader will result in a silent data
loss. Kafka’s synchronization protocol mandates that the followers’ logs
should match the leader’s log. Thus, the leader also instructs the follow-
ers to truncate the log; however, this triggers an assertion at followers,
resulting in their crash. As a result, all future writes become unavailable
(as shown earlier in Figure 3.16). To summarize, the unsafe interaction
between local behavior (i.e., to truncate the log) and the global protocol
(leader election) in Kafka leads to a data loss and write unavailability.

This behavior is in contrast with the leader election protocols of ZooKeeper,
MongoDB, and LogCabin where a node that has truncated log entries
cannot become the leader. In these systems, a node needs to collect votes
from a majority of nodes (including itself) to become the leader. A candi-
date will be denied the vote if it is not up-to-date as the node that is giving



75

the vote. In our experiments, we replicate the data items on all the nodes.
Therefore, a node that has truncated log entries and lost some data cannot
get votes from any other node and hence is precluded from becoming the
leader. However, follow-on work [10] has shown that such systems can
still lose data in the presence of corruptions. In these systems, an update
is considered committed if the update reaches at least a majority of nodes.
Consider a scenario where an update reaches only a bare majority; other
nodes have failed, are partitioned, or are operating slowly. Now, assume
one of the nodes in the bare majority encounters a corruption and trun-
cates its data; this node can now get votes from a majority: from itself
and the other nodes that have not seen the update. Once the faulty node
is elected the leader, other nodes will follow the leader and truncate their
logs, resulting in a global data loss.

Read-repair protocols are used in Dynamo-style quorum systems to
fix any replica that has stale data. On a read request, the coordinator col-
lects the digest of the data being read from a configured number of repli-
cas. If all digests match, then the local data from the coordinator is simply
returned. If the digests do not match, an internal conflict-resolution pol-
icy is applied, and the resolved value is installed on replicas. In Cassan-
dra, which implements read repair, the conflict resolution resolves to the
lexically greater value. When a node in Cassandra is corrupted, the cor-
ruption is not detected. If the corrupted bytes are lexically greater than
the original value, the corrupted value is propagated to all other intact
replicas.

Similarly, in Redis, when a data item is corrupted on the leader, it is
not detected. Subsequently, the re-synchronization protocol propagates
the corrupted data to the followers from the leader, overriding the correct
version of data present on the followers.

To avoid these problems, an ideal system must carefully take into ac-

count how the local behaviors of a faulty node interact with the global



76

a

2L 08sv

D] v/ Q o)

0 Sge&hs g

DO @ - O o0

OO ®©m© q_)z o O

Catastrophic Outcomes | &N UMz 30
Silent Corruption X X X

Unavailability X X X X X

Data Loss X X X X X

Query Failures X X X

Reduced Redundancy X X XXX X X X

Table 3.4: Outcomes Summary. The table shows the summary of our results. It
shows the catastrophic outcomes caused by a single storage fault across all systems we
studied. A cross mark for a system denotes that we encountered at least one instance of
the outcome specified on the left.

distributed protocols.

3.4.7 Results Summary

We now summarize our behavior analysis results. Table 3.4 summarizes
the catastrophic outcomes across all distributed storage systems that we
studied. The table shows that redundancy does not provide fault toler-
ance in many systems: a single storage fault on one node leads to undesir-
able outcomes such as silent user-visible corruption, unavailability, data
loss, query failures, or reduced redundancy. Ideally, none of these prob-
lems should arise since we inject only a single storage fault on a single
node in the system at a time.

Table 3.5 shows the fundamental root causes in storage fault handling
that result in undesirable behaviors. As shown, these fundamental prob-
lems are common across all systems. First, in many systems, faults are
often locally undetected. Even if faults are detected, the most common

local reaction is to crash the node. All systems miss opportunities to use



77

a
25 0ReS
Q Y Q
9 SEef® g
DO 0 - O o0 9
OO ®©®© qu o O
Fundamental Problem N OMME2 a0
Locally Undetected Faults X X X X X
Crashing on Faults X X XXX X X X
Redundancy Underutilized | x x x x x X x X
Crash Corruption Entangled X XX X X
Unsafe Protocol Interaction | x X X

Table 3.5: Observations Summary. The table shows the summary of funda-
mental problems observed across all systems. A cross mark for a system denotes that we
observed at least one instance of the fundamental problem mentioned on the left.

redundancy as a source of recovery from local storage faults. We also
find that crash and corruption handling are entangled in many systems.
Finally, local fault-handling behaviors and global protocols interact in un-
safe ways, leading to catastrophic outcomes.

3.5 File System Implications

We now discuss features of current file systems that can impact the prob-
lems we found. All the bugs that we find can occur on XFS and all ext
file systems including ext4, the default Linux file system. Given that
these file systems are commonly used as local file systems in replicas
of large distributed storage deployments and recommended by develop-
ers [99, 113, 131, 152], our findings have important implications for such
real-world deployments.

File systems such as btrfs and ZFS employ checksums for user data; on
detecting a corruption, they return an error instead of letting applications

silently access corrupted data. Hence, bugs that occur due to an injected



78

block corruption will not manifest on these file systems. We also find that
applications that use end-to-end checksums when deployed on such file
systems, surprisingly, lead to poor interactions. Specifically, applications
crash more often due to errors than corruptions. In the case of corruption,
a few applications (e.g., LogCabin, ZooKeeper) can use checksums and
redundancy to recover, leading to correct behavior; however, when the
corruption is transformed into an error, these applications crash, resulting

in reduced availability.

3.6 Developer Interaction

We contacted the developers of the systems regarding the behaviors we
found. RethinkDB and Redis rely on the underlying storage layers to en-
sure data integrity [141, 142]. The RethinkDB developers intend to change
the design to include application-level checksums in the future and have
updated the documentation to reflect the bugs we reported [144, 145] un-
til this is fixed. They also confirmed the entanglement between corruption
and crash handling [147].

The write-unavailability bug in ZooKeeper discovered by Corps was
encountered by real-world users and has been fixed [188, 190]. The ZooKeeper
developers mentioned that crashing on detecting corruption was not a
conscious design decision [189]. The LogCabin developers also confirmed
the entanglement between corruption and crash handling in open seg-
ments; they added that it is hard to distinguish a partial write from cor-
ruption in open segments [93]. The developers of CockroachDB and Kafka
have also responded to our bug reports [42, 43, 78].



79

3.7 Discussion

We now discuss why modern distributed storage systems are not tolerant
of single storage faults and how the problems we find can be fixed.

In a few systems (e.g., RethinkDB and Redis), we find that the primary
reason is that they expect the underlying storage stack layers to reliably
store data. As more deployments move to the cloud that use inexpen-
sive storage hardware, reliable data storage might not be the reality; stor-
age systems need to employ end-to-end integrity strategies. Lessons from
building large-scale Internet services [50] also emphasize how higher layer
software should provide reliability. The case for such end-to-end data in-
tegrity and error handling can also be found in the classical end-to-end
arguments in system design [154].

As others have pointed out [27, 126, 127, 184], recovery code is rarely
well tested, often contributing to undesirable behaviors. Similarly, al-
though many distributed systems we study employ checksums and other
resiliency techniques, recovery code that exercises such machinery is not
carefully tested. We suggest that future distributed systems need to rig-
orously test failure recovery code using fault injection frameworks such
as ours.

Third, although a body of research work [54, 155, 159, 161, 178] and
enterprise storage systems [98, 122, 123] provide software guidelines to
tackle partial faults, such wisdom has not filtered down to commodity
distributed storage systems.

Next, while other failure models such as crash faults, network par-
titions, and Byzantine faults have been well studied and a vast body of
work [34, 77,81, 85, 86,90, 117, 120] exists on how to tolerate such faults,
we believe that only scant attention has been paid to problems that arise
at the local storage layer in distributed storage systems. Our findings and
other recent work on storage faults in distributed systems [10, 166] are
initial steps in the direction to building distributed systems that tolerate



80

practical faults (such as storage faults) other than the traditional failure
modes.

Finally, although redundancy is effectively used to provide improved
availability, it remains underutilized as a source of recovery from file-
system and other partial faults. To recover from storage faults, redun-
dancy must be effectively utilized. First, the on-disk data structures have
to be carefully designed so that corrupted or inaccessible parts of data can
be identified. Next, corruption recovery has to be decoupled from crash
recovery to fix only the corrupted or inaccessible portions of data; differ-
entiated handling of corruptions due to crashes and other corruptions can
avoid many problems. Sometimes, recovering the corrupted data might
be impossible if the intact replicas are not reachable. In such cases, the
outcome should be defined by design rather than left as an implementa-
tion detail. Finally, local fault-handling behavior has global implications
for distributed systems. Distributed storage system developers need to
understand this interaction carefully for providing improved reliability.

A few lessons from this study have proved instrumental to building
new distributed systems that correctly recover from storage faults [10]
(our follow-on work, not part of this thesis).

3.8 Summary and Conclusions

In this chapter, we analyzed the durability of distributed storage systems
in the presence of storage faults. We presented Corps, a tool that can
systematically inject storage faults into distributed systems using which
we studied eight popular systems. Our analysis revealed that tolerance
of storage faults is not ingrained in modern distributed storage systems.
Most systems are not equipped to effectively use redundancy across repli-
cas to recover from local storage faults; user-visible problems such as data

loss, corruption, and unavailability can manifest due to a single local stor-



81

age fault. Our analysis also revealed some fundamental problems in stor-
age fault handling prevalent across many systems that lead to the above
outcomes.

More broadly, even the seemingly obvious things that we take for granted
in distributed systems such as redundancy will provide fault tolerance is not
the reality in modern distributed storage systems. As these systems are
emerging as the primary choice for storing critical user data, carefully
designing them for all types of faults is important.

In the world of layered storage stacks that run on commodity hard-
ware, faults are the norm, not the exception; therefore, these systems need
to detect such faults carefully. Moreover, in a distributed system, several
unavoidable cases such as power faults and network failures can cause
nodes to be unavailable. In cases where automatic recovery is possible,
simply crashing is not the optimal behavior; redundancy must be effec-
tively utilized to recover from faults. Our testing framework, system-
specific workloads, and the problems we discovered are publicly avail-
able [1].



82

4

Building a Stronger and Efficient
Durability Primitive

In the previous chapter, we studied how even after the data has been
made durable, storage faults in the local storage stack can affect the dura-
bility in distributed storage systems. In this chapter, we shift our focus
and examine how a distributed system makes data durable in the first
place. We refer to the set of actions a system takes to make data durable
as its durability model. In particular, durability models describe how data
is replicated and persisted across machines and the guarantees for data
safety a system offers in the presence of failures. The durability model
of a system strongly influences what consistency model the system can
provide and how good it can perform.

However, despite this importance, this key design decision in distributed
storage systems has received relatively scant attention. Therefore, in the
first part of this chapter, we study existing systems on how they make
data durable. We find that two durability models are popular and most
systems use either one of them.

At one extreme is immediate durability, in which a system only returns
from a write when the data has been replicated and persisted to the stor-
age device on many nodes. At the other extreme is eventual durability
where a system acknowledges a write after buffering it in just the mem-

ory of one or a few nodes; replication and persistence are orchestrated



83

in the background, eventually making the data durable. Our analysis re-
veals that neither of these approaches is ideal. While immediate durabil-
ity enables strong consistency, it only offers poor performance; eventual
durability, in contrast, delivers high performance, but it can only enable
weak consistency.

To resolve this tension, in the second part of this chapter, we intro-
duce consistency-aware durability (Cap), a new approach to durability in a
distributed storage system. The key idea behind Cab is to shift the point
of durability from writes to reads. Cap delays durability upon writes,
achieving high performance. Because what clients observe on reads is
important for consistency models, Cap guarantees that data items are
durable before serving out reads; this enables Cab to realize stronger con-
sistency models atop it. In the next chapter, we show how cross-client
monotonic reads, a strong consistency property can be realized upon Cab.

We implement Cap for leader-based majority systems by modifying
ZooKeeper [16]. Our experiments show that ZooKeeper with Cab is sig-
nificantly faster than immediately durable ZooKeeper while approximat-
ing the performance of eventually durable ZooKeeper for many work-
loads. This chapter is based on parts of the paper, Strong and Efficient
Consistency with Consistency-Aware Durability, published in FAST 20 [60].

This chapter is organized as follows. We first present the different
durability models and analyze how the system’s durability model deter-
mines its performance and consistency guarantees (§4.1). We then de-
scribe the ideas behind the new durability model, Cap (§4.2). Next, we
describe the design (§4.3) and implementation (§4.4) of Cap for leader-
based majority systems. Next, we present our evaluation (§4.5). We then
describe our implementation and evaluation of Cap for a different sys-
tem, Redis (§4.6). We next discuss how Cap can be beneficial for current
deployments, how it can be implemented in other classes of systems, and

benefits of Cap even with the advent of fast storage devices (§4.7). Finally,



84

we summarize and conclude (§4.8).

4.1 Durability Models

A durability model describes how writes are replicated and persisted
across nodes in a distributed system and what guarantees for data safety
the system offers in the presence of failures. In this section, we discuss
the immediate and eventual durability models and analyze how the sys-
tem’s durability model determines its performance and consistency guar-
antees. We perform this analysis for leader-based majority systems (e.g.,
ZooKeeper).

4.1.1 Immediate Durability

A system that employs immediate durability replicates and persists data
on many nodes before clients are acknowledged. For example, in majority-
based systems (such as ZooKeeper, LogCabin, and etcd [16, 53, 87, 92,
120]), upon a write, the leader synchronously replicates the data on a
majority, and the nodes synchronously flush the data to disk (e.g., using
fsync) before acknowledging clients.

By persisting data on many nodes, immediately durable systems of-
fer strong durability guarantees: all acknowledged data can be recovered
even when many or all replicas crash and recover. Given that majority-
based systems remain available only when at least a majority nodes are
alive, at least one node at any time will contain all committed data on its
disk, and so clients will never see any data loss.

However, such strong durability comes at the cost of performance;
specifically, synchronous replication and persistence incur large overheads.
To highlight these overheads, we conduct a simple experiment with Redis
on a five-node cluster. The replicas are located in a single data center and

use SSDs for persistence. We perform a write-only workload with eight



85

Configuration Throughput (ops/sec)
Replication | Persistence Local DC Geo-distributed
async async 24215 9947
sync async 9889 (2.4x |) 108 (92x% )
sync sync 2345 (10.3x ) 106 (94x |)

Table 4.1: Immediate Durability Costs. The table shows the overheads of syn-
chronous operations in Redis. The arrows show the throughput drop compared to the
fully asynchronous configuration.

clients where each client sends write requests to the leader in a closed
loop; the leader then forwards the requests to the followers. We first con-
figure Redis to be immediately durable where both replication and per-
sistence are performed synchronously; at least three replicas must persist
the data in the critical path of writes before acknowledgment. We enable
synchronous replication and persistence in Redis by setting WwAIT [139] to
two and appendfsync [136] to always. We then compare the performance
of this synchronous configuration with two different asynchronous con-
figurations of Redis: synchronous replication and asynchronous persis-
tence where data is replicated on a majority but not persisted on the disks,
and asynchronous replication and asynchronous persistence where data
is just buffered in the memory of the leader before acknowledgment.
Table 4.1 shows the results. As shown, when configured to replicate
and persist synchronously to a majority (last row of the table), Redis is
10.3x slower than the fully asynchronous configuration (first row of the
table) in which writes are buffered on one node’s memory. The differ-
ence is much more pronounced if the replicas are in different data cen-
ters. To demonstrate this, we run a similar experiment but with replicas
distributed across three data centers and with no data center having a
majority; the clients are located in the same data center as the leader. In

such a setting, immediately durable Redis is 94x slower than the fully



86

asynchronous configuration (last column in Table 4.1). While batching
concurrent requests may improve throughput in some systems, immedi-

ate durability fundamentally suffers from high latency.

4.1.2 Eventual Durability

Given the cost of immediate durability, many deployments prefer weak,
asynchronous configurations where writes are just replicated to one or a
few nodes before acknowledging the client. The system then lazily repli-
cates and persists in the background, eventually making writes durable.
We refer to this durability model as eventual durability. Asynchronous
operations enable the system to provide good performance; however, writes
can be lost if failures arise before the system can make the data durable.
However, given the performance benefits, many popular systems like Re-
dis and MongoDB [104, 136, 137] use asynchronous configurations by de-
fault.

Most systems use two distinct kinds of eventual-durability configura-
tions. In the first kind, the system performs both replication and persis-
tence in an asynchronous fashion; for example, Redis, in its default con-
figuration, buffers updates on one node’s memory before acknowledg-
ment. In the second kind, the system synchronously replicates, but per-
sists data asynchronously; for instance, disabling the forceSync flag [17] in

ZooKeeper achieves this effect and Redis can also be configured this way.

Asynchronous Persistence. As mentioned above, a few systems repli-
cate synchronously but persist asynchronously: the nodes do not flush
the data to disk before acknowledgment. Disabling synchronous per-
sistence considerably boosts performance for single-data-center deploy-
ments, tempting practitioners to do so [55, 125]. For instance, as shown in
Table 4.1, Redis with asynchronous persistence is 4.2 x (9989 /2345) faster

than the synchronous version. When replicas are located in multiple data



87

alb alb alb a |
alb alb alb sla i
al b S a “al ¥
a a a a
a a a a
a,b acked S, crashes S, S, S form follow leader;
ais durable majority b overwritten
clients read a,b clients see b is lost

Figure 4.1: Asynchronous Persistence. The figure shows how an arbitrary data
loss can occur upon failures with systems that persist asynchronously. Data items shown
in grey denote that they are persisted (in the background).

centers, using asynchrony only in persistence does not offer higher per-
formance than the synchronous configuration. This is because network
round-trip latency between data centers are much higher than the time
taken to persist data on SSDs. However, if the replicas run on slow HDDs,
turning off persistence in the synchronous path might be beneficial even
in geo-distributed settings.

With asynchronous persistence, however, the system may arbitrarily
lose data although the data is replicated in memory. Surprisingly, such
cases can occur although data is replicated in memory of many nodes
and when just one node crashes at an inopportune moment. Consider
ZooKeeper with asynchronous persistence as shown in Figure 4.1. At
first, a majority of nodes (Sy, S, and S3) have committed an item b, buffer-
ing it in memory; two nodes (S4 and S5) are operating slowly and so have
not seen b. When a node in the majority (S3) crashes and recovers, it loses
b. S3 then forms a majority with nodes that have not seen b yet and gets
elected the leader. The system has thus silently lost the committed item b
and so a client that previously read a state containing items a and b will

now notice an older state containing only a and that b has been lost by the



88

[&le 3 T,
a - a a i

a » a » a

a a a

a a a
a,b acked:; S, fails; S,-new leader S, follows
clients read a,b clients see only a new leader

Figure 4.2: Asynchronous Replication and Asynchronous Persistence.
The figure shows how an arbitrary data loss can occur upon failures with systems that
replicate and persist asynchronously.

system. The intact copies on S; and S, are also replaced by the new leader
because followers always follow the leader’s state in many systems [120].

Data-loss instances with asynchronous persistence similar to the one
shown in Figure 4.1 can be avoided if the system uses a recovery protocol
like in Viewstamped Replication [90]. In such an approach, a node that
has lost its data because of a crash is marked to be in a recovering state;
such a node is precluded from participating in leader election and nor-
mal operations until it can recover its lost data by contacting a majority
of nodes. By running such a recovery protocol, this approach prevents a
silent data loss. However, practical systems do not employ such a strat-
egy. Moreover, such solutions affect availability in some scenarios; for ex-
ample, when a majority of nodes crash at the same time, the system will
remain unavailable even after all nodes have recovered from the crash.
One way to fix this problem would be to have an administrator do a re-
pair after such failures [72]. However, such manual intervention can be
error-prone; the system can arbitrarily lose data items that have been read
by clients before the failure.



89

Asynchronous Replication and Asynchronous Persistence. Fully asyn-
chronous systems, upon a write, simply buffer the data on the leader’s
memory, achieving high performance. However, such systems provide
weak durability: they may lose data arbitrarily.

Consider the scenario shown in Figure 4.2. The leader (S1) has ac-
knowledged a client of item b after buffering it only in its memory. As-
sume, the leader fails before it can replicate the update and a few clients
read the buffered item b from the leader. Once the leader fails, the other
nodes (that do not have any knowledge of b) elect a new leader among
themselves and the clients will now observe that the system has lost item
b. The data is lost forever when the new leader overwrites the data on the

old leader when it recovers.

4.1.3 Consistency and Durability

We now discuss how durability models affect consistency. Immediate
durability, in addition to ensuring that the data will never be lost, acts as a
foundation upon which strong consistency can be realized. For example,
consider linearizability, the strongest guarantee a replicated system can
provide. A linearizable system offers two properties upon reads. First,
it prevents clients from seeing non-monotonic states: the system will not
serve a client an updated state at one point and subsequently serve an
older state to any client. Second, a read is guaranteed to see the latest
update: stale data is never exposed. However, to provide such strong
guarantees on reads, a linearizable system must pay the cost of immedi-
ate durability during write operations [87]. For example, majority-based
linearizable systems synchronously persist data on a majority before ac-
knowledgment [120]. Upon a synchronously durable foundation, these
systems use additional mechanisms to ensure linearizability [87]. For ex-
ample, in addition to using immediate durability, many practical lineariz-
able systems restrict reads to the leader [80, 92, 108, 119].



90

Given that immediate durability is expensive, many systems adopt
eventual durability; however, by doing so, these systems settle for weaker
consistency. As we discussed earlier, eventual durability can lead to ar-
bitrary loss of data. Upon such a weakly durable substrate, it is hard (if
not impossible) to realize strong consistency. For example, consider the
above two properties of strong consistency: clients can never see stale or
out-of-order data. A weakly durable system violates these two proper-
ties. Data-loss instances as shown in Figures 4.1 and 4.1 naturally expose
stale and out-of-order states: clients may read a state that contains items
a and b before the failure and later notice the state contains only a.

In essence, systems built upon eventual durability cannot realize strong
consistency properties in the presence of failures. Such systems can serve
a newer state before the failure but an older one after recovery, exposing
non-monotonic reads.

Only models weaker than linearizability such as causal consistency
can be built atop eventual durability; such models offer monotonic reads
only in the absence of failures and within a single client session. If the
server to which the client is connected crashes and recovers, the client
has to establish a new session in which it may see a state older than what

it saw in its previous session [96].

4.2 Consistency-aware Durability: A New
Durability Primitive

To summarize our discussion thus far, immediate durability enables strong
consistency but is prohibitively expensive. Eventual durability offers high
performance, but only weak consistency can be built upon it. Given this,
we ask the following question: is it possible to rethink the durability layer to
achieve both strong consistency and high performance?



91

We first note that to provide high performance the system cannot em-
ploy synchronous writes because replicating and persisting on many nodes
in the critical path of writes is simply too slow. Second, we realize that
what clients observe upon reads is important for most consistency mod-
els. Based on these two insights, we rethink the durability layer and pro-
pose consistency-aware durability or Cap, a new durability primitive.

The main idea underlying Cab is read-triggered durability: i.e., dura-
bility is guaranteed upon reads not writes. Similar to eventual durabil-
ity, Cap allows writes to be completed asynchronously. The writes are
just buffered in the memory of one node and immediately acknowledged;
replication and persistence happen in the background. However, unlike
eventual durability, Cap enforces durability upon reads: if a non-durable
data item is read, Cap makes the item durable by synchronously replicat-
ing and persisting the item before serving the read. This ensures that data
that has been read by a client is not lost and thus prevents out-of-order
states.

Capb does not always incur the cost of synchronous operations when
data is read. First, for many workloads, Cap can make the data durable in
the background well before applications read it. Further, only the first
read to non-durable data triggers synchronous replication and persis-
tence; subsequent reads are fast. Thus, in the common case, when clients
do not read data immediately after writing (which is natural for many
workloads), Cap can realize the high performance of eventual durabil-
ity. In the case where clients do read data immediately after writing,
Cabp incurs overheads but ensures durability of data that has been read
by clients.

In summary, by delaying the durability of writes, Cap achieves high
performance. However, by ensuring that the data is durable before it is
read, Cap enables building of stronger consistency models upon it. In

the next chapter, we show how one such stronger consistency property



92

that we call cross-client monotonic reads can be realized atop Cap and also
discuss the utility of the new consistency guarantee.

An important aspect of Cab is that it does not offer complete freedom
from data loss. Cabp may lose updates if failures arise before the updates
are read. Therefore, Cap is not a replacement for applications that re-
quire immediate durability. However, many systems do not use imme-
diate durability and currently adopt eventual durability, thereby settling
for weaker guarantees. Cap offers a way for these systems to realize better

guarantees without forgoing performance.

4.3 CAD Design

We now describe how we design consistency-aware durability for leader-
based majority systems. We first provide a brief overview of leader-based
systems (§4.3.1) and outline Cap’s failure model and guarantees (§5.3.1).
We then describe the update path (§4.3.3) and Cap’s state durability guar-
antee (§4.3.4). We then describe Cap’s mechanisms to ensure durability
on reads (§4.3.5 and §4.3.6). We finally discuss Cap’s correctness (§4.3.7).

4.3.1 Leader-based Majority Systems

Asdiscussed earlier (in §2.3), in leader-based systems (such as ZooKeeper),
all updates flow through the leader which establishes a single order of
updates by storing them in a log and then replicating them to the fol-
lowers [71, 120]. The leader is associated with an epoch: a slice of time,
in which at most one leader can exist [19, 120]. Each update is uniquely
identified by the epoch in which it was appended and its position in the
log. The leader constantly sends heartbeats to the followers; if the follow-
ers do not hear from the leader for a while, they elect a new leader.

With immediate durability, the leader acknowledges an update only
after a majority of replicas (i.e., [n/2] + 1 nodes in a n-node system) have



93

persisted the update. With eventual durability, updates are either buffered
in memory on just the leader (asynchronous replication and persistence)
or a majority of nodes (asynchronous persistence) before acknowledg-

ment.

4.3.2 Failure Model and Guarantees

Similar to many majority-based systems, Cap intends to tolerate only fail-
recover failures, not Byzantine failures [86]. In the fail-recover model,
nodes may fail at any time and recover at a later point. Nodes fail in two
ways; first, they could crash (e.g., due to power failures); second, they
may get partitioned due to network failures. When a node recovers from
a crash, it loses its volatile state and is left only with its on-disk state.
During partitions, a node’s volatile state remains intact, but it may not
have seen data that the other nodes have.

Guarantees. Cap preserves the properties of a leader-based system that
uses eventual durability; it does not prevent absolute data loss. For exam-
ple, if failures arise after writing the data but before reading it, Cap may
lose a few recent updates and thus subsequent reads can get an older
state. However, Cap guarantees that data that has been read by applica-
tions can be recovered under all failure scenarios (e.g., even if all replicas
crash and recover). Further, Cap maintains a single order of updates sim-
ilar to leader-based majority systems. Therefore, Cap guarantees that all
updates upto the latest item that was read remain durable and are not
lost upon failures. Majority-based systems remain available as long as a
majority of nodes are functional [20, 120]; Cap ensures the same level of
availability.



94

background
b is acked replication and b is durable
persistence
c
S | write(b
= write®)s L [a] b alb|l = alb
= gl ack — — A
Q. '
o ¢ S, |a a A alb
g 2 — — A
7 s, [a » & ./ [
g 3 L = sgeh
o3 s [a] & 24 [Elh
= 5 4 L& [al 5+ a
(%) — M II
4 S; [al a] 4 [a]b
write(b) « L
o |—= Silalb . al bl - alb
c
S, ack N N
8 S, Lal b % ajb| A ajb
U g n n
c 4 M M
= .0 /7 n ‘n
qu)) ﬂ S3 B b £ 1n » a b £ n » a' b
s L | ": ] I’:
o L0 ’
2 541 S | 4| G4 alb
= I T'% ,l — g ,:
o / Q. /
S, L&l "y 2] ; ajb

Figure 4.3: Cap Update Path. The figure shows the update path in Cap. Data
items that are durable are shown in grey boxes. In (i), the baseline performs both repli-
cation and persistence asynchronously; in (ii), the baseline synchronously replicates but
persists lazily in the background. When a client writes item b, the write is acknowl-
edged before b is made durable similar to the baselines. CAD then makes b durable in the
background by replicating and persisting b on other nodes asynchronously.

4.3.3 Update Path

In the rest of this section, we use eventual durability as the baseline to
highlight how Cab is different from it. Cap aims to perform similarly to
this baseline but provides better guarantees. We now provide intuition
about how Cap works and explain its mechanisms.

Cabp preserves the update path of the baseline eventual system as it



95

aims to provide the same performance during writes. Thus, if the base-
line employs asynchronous replication and persistence, then Cap also
performs both replication and persistence asynchronously, buffering the
data in the memory of the leader as shown in Figure 4.3(i). Similarly, if
the baseline synchronously replicates but asynchronously persists, then
Cap also does the same upon writes as shown in Figure 4.3(ii). While pre-
serving the update path, in Cap, the leader keeps replicating updates in
the background and the nodes flush to disk periodically.

4.3.4 State Durability Guarantee

When a read for an item i is served, Cap guarantees that the entire state
(i.e., writes even to other items) up to the last update that modifies i are
durable. For example, consider a log such as [a, by, c, by, d]; each entry
denotes a (non-durable) update to an item, and the subscript shows how
many updates are done to a particular item. When item b is read, Cap
guarantees that all updates at least up to b, are made durable before serv-
ing b. Cap makes the entire state durable instead of just the item because
it aims to preserve the update order established by the leader (as done by
the base system).

Cap considers the state to be durable when it can recover the data after
any failures including cases where all replicas crash and recover and in
all successive views of the cluster. Majority-based systems require at least
a majority of nodes to form a new view (i.e., elect a leader) and provide
service to clients. Thus, if Cap safely persists data on at least a majority of
nodes, then at least one node in any majority even after failures will have
all the data that has been made durable (i.e., that was read by the clients)
and thus will survive into the new view. Therefore, Cap considers data to

be durable when it is persisted on the disks of at least a majority of nodes.



96

4.3.5 Handling Reads: Durability Check

We now discuss how Cap handles reads; we use Figure 4.4 to do so. When
a read request for an item 1 arrives at a node, the node can immediately
serve i from its memory if all updates to i are already durable (e.g., Fig-
ure 4.4, read of item a); otherwise, the node must take additional steps
to make the data durable. As a result, the node first needs to be able to
determine if all updates to i have been made durable or not.

A naive way to perform this check would be to maintain for each item
how many nodes have persisted the item; if at least a majority of nodes
have persisted an item, then the system can serve it. A shortcoming of this
approach is that the followers must inform the leader the set of items they
have persisted in each response, and the leader must update the counts
for all items in the set on every acknowledgment.

Cap simplifies this procedure by exploiting the ordering of updates
established by the leader. Such ordering is an attribute common to many
majority-based systems; for example, the ZooKeeper leader stamps each
update with a monotonically increasing epoch-counter pair before ap-
pending it to the log [18]. In Cap, with every response, the followers send
the leader only a single index called the persisted-index which is the epoch-
counter of the last update they have written to disk. The leader also main-
tains only a single index called the durable-index which is the index up to
which at least a majority of nodes have persisted; the leader calculates
the durable-index by finding the highest persisted-index among at least
a majority (including self).

When a read for an item i arrives at the leader, it compares the update-
index of i (the epoch-counter of the latest update that modifies i) against
the system’s durable-index. If the durable-index is greater* than the update-

index, then all updates to i are already durable and so the leader serves i

*An index a is greater than index b if (a.epoch > b.epoch) or (a.epoch == b.epoch
and a.counter > b.counter).



97

read(a) read(b)
durable-index:1 durable-index:1 state up to at least
update-index:1 update-index:2 index 2 durable;
durability check passes:  durability check fails serve b
serve a make data durable
&
5 S la|b|c al bl c alb|c
39 B
o c S, |a|b alb| alb|c
E % e S - I’:\
o0 S. |a » al 5.0 » alb|c
© g 3 = — w27
o o " ] 8 ] II:
£ 2 S a al 34 alb
T © 4 L — Q '
(%] — — I’ —
& S. |a | 2] ¥ =l
L
o S; |alb|c al bfchk a|bfc
g ‘:\
8 g S, |a|b|c a|bfc|/\ albjc
'uj q) III
cC + I:‘|
3 2 S3abc» abc/;.ll» a|bfc
28
= S4 alb alb § P alb
Nes) e I g ,’, M
S. |a a ) a

Figure 4.4: Cap Durability Check. The figure shows how Cap works. Data
items shown in grey are durable. In (i), the baseline is fully asynchronous; in (ii), the
baseline synchronously replicates but asynchronously persists. At first, when item a is
durable, read(a) passes the durability check. Items b and c are not yet durable. The check
for read(b) fails; hence, the leader makes the state durable after which it serves b.

immediately; otherwise, the leader takes additional steps (described next)
to make the data durable.

The leader also periodically (via the heartbeats and replication requests)
informs the followers of the durable-index. If the read arrives at a fol-

lower, it performs the same durability check (using the durable-index sent



98

by the leader). If the durability check passes, the follower serves the read;
otherwise, it redirects the request to the leader which then makes the data
durable as we describe next. Note that the durable-index might be lag-
ging in the followers when compared to the leader. If the durable-index is
stale, then the follower might consider a durable item to be non-durable
and redirect that request to the leader. Therefore, this staleness does not
affect the correctness of Cab.

An alternative to read-triggered durability while still ensuring only
durable items are read would be to maintain two versions for each item:
a durable version and a non-durable one. The system would then only
serve durable versions on reads. One shortcoming of this approach is
that the system needs to maintain two versions for each data item, result-
ing in space overheads. More importantly, the alternative approach also
increases the amount of stale data that the system exposes compared to
the baseline (eventually durable system). For example, if a read arrives at
a node that already has the latest data, the read would see the latest data
in the baseline. However, if Cap maintains two versions for each item and
serves a durable version that is stale, it would increase the staleness ex-
posed by Cap. Our goal is to improve the guarantees over the baseline;
therefore, we chose to reject this design and use read-triggered durability

instead which we describe next.

4.3.6 Read-triggered Durability

If the durability check fails, Cab needs to make the state (up to the latest
update to the item being read) synchronously durable before serving the
read. The leader treats the read for which the check fails specially. First,
the leader synchronously replicates all updates up to the update-index
of the item being read if these updates have not yet been replicated. The
leader also informs the followers that they must flush their logs to disk
before responding to this request.



99

When the followers receive such a request, they synchronously ap-
pend the updates and flush the log to disk and respond. During such a
flush, all previous writes buffered are also written to disk, ensuring that
the entire state up to the latest update to the item being read is durable.
Fortunately, the periodic background flushes reduce the amount of data
that needs to be written during such foreground flushes. The persisted-
index reported by a node as a response to this request is at least as high as
the update-index of the item. When the flush finishes on a majority, the
durable-index will be updated, and thus the data item can be served. The
second column of Figure 4.4 shows how this procedure works. As shown,
the durability check fails when item b is read; the nodes thus flush all up-
dates up to index 2 and so the durability-index advances; the item is then
served.

As an optimization, Cap also persists writes that are after the last up-
date to the item being read. Consider the log [a, b, c] in Figure 4.4; when
a client reads b, the durability check fails. Now, although it is enough
to persist entries up to b, Cap also flushes update c, obviating future syn-
chronous flushes when c is read as shown in the last column of the figure.

To summarize, Cap makes data durable upon reads and so guarantees
that state that has been read will never be lost even if servers crash and

recover.

4.3.7 Correctness

For correctness, Cab must always recover state up to the last update that
was read by clients. Aslong as the current leader is functional, the leader
ensures that the data is persisted on at least a majority before serving
reads. However, Cap must be careful about how it recovers state when
the current leader fails.

When the current leader fails, Cap must ensure that latest state that

was read by clients survives into the new view. We argue that this is



100

ensured by how elections work in Cap (and in many majority-based sys-
tems). Let us suppose that the latest read has seen state up to index L.
When the leader fails and subsequently a new view is formed, the system
must recover all entries at least up to L for correctness; if not, an older
state may be returned in the new view. The followers, on a leader failure,
become candidates and compete to become the next leader. A candidate
must get votes from at least a majority (may include self) to become the
leader. When requesting votes, a candidate specifies the index of the last
entry in its log. A responding node compares the incoming index (P)
against the index of the last entry in its own log (Q). If the node has more
up-to-date data in its log than the candidate (i.e., Q > P), then the node
does not give its vote to the candidate. This is a property ensured by many
majority-based systems [12, 19, 120] which Cap preserves.

Because Cap persists the data on at least a majority before serving
reads, at least one node in any majority will contain state up to L on its
disk. Thus, only a candidate that has entries at least up to L can get votes
from a majority and become the leader. In the new view, the nodes follow
the new leader’s state. Given that the leader is guaranteed to have entries
at least up to L, all data that have been served so far will survive into the
new view, thus ensuring that clients will always be able to read what they

read previously.

4.4 Implementation

We have built Cap by modifying ZooKeeper (v3.4.12). We have two base-
lines. First, ZooKeeper with synchronous replication but asynchronous
persistence (i.e., ZooKeeper with forceSync disabled). Second, ZooKeeper
with asynchronous replication; we modified ZooKeeper to obtain this
baseline.

In ZooKeeper, write operations either create new key-value pairs or



101

update existing ones. As we discussed, Cap follows the same code path of
the baseline for these operations. In addition, Cap replicates and persists
updates constantly in the background. Read operations return the value
for a given key. On a read, Cap performs the durability check (by com-
paring the key’s update-index against the system’s durable-index) and
enforces durability if required.

Cabincurs little metadata overheads compared to unmodified ZooKeeper
to perform the durability check. Specifically, ZooKeeper already main-
tains the last-updated index for every item (as part of the item itself [21])
which Cap reuses. Thus, Cap needs to additionally maintain only the
durable-index, which is 8 bytes in size. However, some systems may not
maintain the update indexes; in such cases, Cap needs eight additional
bytes for every item compared to the unmodified system, a small price to
pay for the performance benefits.

Performing the durability check is simple in ZooKeeper because what
item a request will read is explicitly specified in the request. However,
doing this check in a system that supports range queries or queries such
as “get all users at a particular location” may require a small additional
step. The system would need to first tentatively execute the query and de-
termine what all items will be returned; then, it would enforce durability
if one or more items are not durable yet.

We modified ZooKeeper’s replication requests and responses as fol-
lows. The followers include the persisted-index in their response and the

leader sends the followers the durable-index in the requests or heartbeats.

4.5 Evaluation

In our evaluation, we seek to analyze and understand the following as-

pects of Cap:

* Cap does not change the path of writes when compared to eventual



102

durability; therefore, Cap should match the performance of even-
tual durability on writes. Thus, we first ask: how does Cap perform
during a write-only workload compared to immediate and eventual
durability? (§4.5.1)

* Cap enforces durability on reads. If a read accesses a non-durable
dataitem, Cap has to make data items durable through synchronous
operations in the critical path of reads. Thus, we next ask: how
much overheads does Cab incur on reads for workloads consisting
of a mix of read and writes? How does this affect the overall perfor-
mance of Cap? (§4.5.2)

¢ Finally, we ask: does Cap’s implementation in ZooKeeper ensure

durability of items that have been read in the presence of failures?
(84.5.3)

We conduct a set of experiments to answer these questions. We run
our performance experiments with five replicas. Each replica is a 20-core
Intel Xeon CPU E5-2660 machine with 256 GB memory running Linux
4.4 and uses a 480-GB SSD to store data. The replicas are connected via a
10-Gbps network. Numbers reported are the average over five runs.

We compare Cap against immediate and eventual durability. With im-
mediate durability, the system replicates and persists writes (using fsync)
on a majority in the critical path; it employs batching to improve perfor-
mance. There are two asynchronous configurations of eventual durability
and Cap: fully asynchronous and asynchronous persistence. In the fully
asynchronous configuration, the system performs both replication and
persistence asynchronously. With asynchronous persistence, the system
replicates synchronously but persists asynchronously. Unless specified
otherwise, we use the fully asynchronous configuration in our experi-

ments.



103

7000 |- : | imr‘nedia‘te-no-‘batch‘ - — ]
6000 F immediate —_——
o~ eventual] =——e= -
4 5000 |- | cad = =x= =
§ 4000 - . |
8 3000 » .
<
~ 2000 | } 4 |
1000 .}3 |
0 W=%= = o o o \‘""’-—\- \
0 5 10 15 20 25 30 35 40

Throughput (Kops/sec)
Figure 4.5: Write-only Workload: Latency vs. Throughput. The figure

plots the average latency against throughput by varying the number of clients for a write-
only workload for different durability layers.

4.5.1 Write-only Micro-benchmark

We first compare the performance for a write-only workload. Intuitively,
Cab should outperform immediate durability and match the performance
of eventual durability for such a workload. Figure 4.5 shows the result:
we plot the average latency seen by clients against the throughput ob-
tained when varying the number of closed-loop clients from 1 to 100. We
show two variants of immediate durability: one with batching and the
other without. We show the no-batch variant only to illustrate that it is
too slow and we do not use this variant for comparison; throughout our
evaluation, we compare only against the optimized immediate-durability
variant that employs batching.

We make the following three observations from the figure. First, im-
mediate durability with batching offers better throughput than the no-
batch variant; however, even with aggressive batching across 100 clients,
it cannot achieve the high throughput levels of Cap. Second, writes incur

significantly lower latencies in Cap compared to immediate durability; for



104

100 = - P
so| [ -/
w60 [ S
© 40 ¢ I 1mmediate i l immediate
20 ! eventual — -| | f eventual — -
/ cad ==~ - j cad - -~ -
0 | | | | | |
0 400 800 1200 1600 0 400 800 1200 1600
Latency (us) Latency (us)
(i) YCSB-A (ii) YCSB-F
(a) Write-heavy workloads
100 = =
ol -/
60 F S
a I [
© 40 | l immediate i immediate
20 ! eventual — -| | \ eventual — -
/ cad ==~ - / cad = -~ -
O | | | | | | | |

0 400 800 1200 1600 0 400 800 1200 1600
Latency (Us) Latency (us)

(i) YCSB-B (i) YCSB-D

(b) Read-heavy workloads
Figure 4.6: YCSB Write Latencies. (a)(i) and (a)(ii) show the write latency
distributions for the three durability layers for write-heavy YCSB workloads. (b)(i) and
(b)(ii) show the same for read-heavy YCSB workloads.

instance, at about 25 Kops/s (the maximum throughput achieved by im-
mediate durability), Cap’s latency is 7x lower. Finally, Cap’s throughput

and latency characteristics are very similar to that of eventual durability.

4.5.2 YCSB Macro-benchmarks

We now compare the performance across different workloads in the Ya-
hoo! Cloud Serving Benchmark (YCSB) [44]. We use four YCSB work-



105

loads that have different read-write ratios and access patterns: A (w:50%,
1:50%), B (W:5%, 1:95%), D (read latest, w:5%, 1:95%), F (read-modify-
write:50%, 1:50%). We do not run YCSB-E because ZooKeeper does not
support range queries. The workloads in YCSB have characteristics sim-
ilar to real-world applications. Workload-A reflects a session store; B re-
sembles a photo-tagging application; D models user status updates; F re-
flects the read-modify-write pattern frequently used in data stores. A,
B, and F have a zipfian access pattern (most operations access popular
items); D has a latest access pattern (most reads are to recently modified
data).

We run this experiment with 10 clients. We restrict the reads only to
the leader. Cap must ideally match the performance of eventual dura-
bility and perform faster than immediate durability. We first compare
the write latencies of the different durability models. We then show the
overheads that Cap incurs on reads when compared to eventual durabil-
ity. Finally, we compare the overall performance of the three durability
models.

Write Latencies. The performance of writes in Cap should be identical
to eventual durability; making data durable on reads should not affect
writes. Figure 4.6 shows the latency distribution of writes for the three
durability layers for different YCSB workloads that have a mix of reads
and writes. As shown, writes in Cap are much faster than immediate
durability. Also, writes in Cap match the performance of eventual dura-
bility for both write-heavy and read-heavy workloads.

Read Latencies. Most read operations in Cap must experience latencies
similar to reads in eventual durability. However, reads that access non-
durable items may trigger synchronous replication and persistence, caus-
ing a reduction in performance. This effect can be seen in the read la-
tency distributions shown in Figures 4.7 and 4.8. As shown, a fraction

of reads (depending upon the workload) trigger synchronous replication



106

100 > ST oTe =
ST T I oo close-up

30 | / 00— ==~ -
w60 | £ 96l % et
ol [ oW

N 300 700 1100

20 | eventual — - -

0 / | - cad -----
0 400 800 1200
Latency (s)
(a) YCSB-A
100 T o emE R mmE =
Tt | 0 (’)‘*‘-ZZ‘;E:Idse—up i}

0 [ g
60 ! 96li" " *
Q L / :' | -

40 ; 92300 700 1100

20 eventual —— - -

0 / | o cad =----
0 400 800 1200
Latency (Us)
(b) YCSB-F

Figure 4.7: YCSB Read Latencies: Write-heavy workloads. (a) and (b)
show read latencies for eventual durability and Cap for write-heavy YCSB workloads.
The annotation within a close-up shows the percentage of reads that trigger synchronous
durability in Cap.

and persistence, and thus incur higher latencies. However, as shown in
the close-ups in Figures 4.7 and 4.8, for the variety of workloads in YCSB,
this fraction is small (less than 5%).

A bad workload for Cap is one that predominantly reads recently writ-

ten items. Even for such a workload, the percentage of reads that actu-



107

100 e i ——— - -
close-up
30 / 100 i

E 60 ! :;,():8’% i

S0l | -
40 ' 9?500 700 1100
20 eventual — - -

0 / | - cad -----
0 400 800 1200
Latency (s)
(a) YCSB-B
100 ——
0|  f 100 o
/ ,ﬁ_3ﬂ70— -

LT-i 60 B [] 96 / ¢' — B
40 k 92300 700 1100
20 eventual — -

0 / | o cad =----
0 400 800 1200
Latency (Us)
(b) YCSB-D

Figure 4.8: YCSB Read Latencies: Read-heavy workloads. (a) and (b)
show read latencies for eventual durability and Cap for read-heavy YCSB workloads.

ally trigger immediate durability is small due to prior reads that make
state durable and periodic background flushes in Cap. For example, with
YCSB-D, although 90% of reads access recently written items, only 4.32%
of these requests trigger synchronous replication and persistence (as shown
in Figure 4.8 (b)).

Overall Performance. We now compare the throughput of the three dura-
bility layers for the various YCSB workloads. Figure 4.9 shows the results.



108

M immediate B eventual % cad
60 -

™
-

Throughput (Kops/sec)

Workload
(a) Baseline: async replication & persistence
M immediate M eventual 7% cad

Throughput (Kops/sec)

Workload
(b) Baseline: async persistence

Figure 4.9: Overall Performance. The figure compares the throughput of the
three durability layers. In (a), eventual and Cap are fully asynchronous; in (b), they
replicate synchronously but persist lazily. The number on top of each bar shows the
factor of improvement over immediate durability.

In Figure 4.9(a), eventual and Cab carry out both replication and per-
sistence asynchronously; whereas, in 4.9(b), they replicate synchronously
but persist to storage lazily.

As shown in Figure 4.9(a), compared to immediate durability with
batching, Cap’s performance is significantly better. Cap is about 1.6x and
3x faster than immediate durability for read-heavy workloads (B and D)



109

crash 1,3 recover1 «crash2 recover3 recover 2

- ~ - =<
N\ 7 2,7

’ A, N J B N
12345—>245—>1245—>145 —>1§45—> 12345

e 1lF off ol e

Figure 4.10: An Example Failure Sequence. The figure shows an example
sequence generated by our test framework.

- - p— -

and write-heavy workloads (A and F), respectively. Cap closely matches
the performance of eventual durability even in the presence of some reads
that trigger synchronous durability in Cap. For the different YCSB work-
loads, the drop in performance for Cap compared to eventual durability
is little (2% — 8%). Even, for the worst-case read-latest workload (YCSB-
D), Cap’s overhead compared to eventual durability is only 8%. Similar
results and trends can be seen for the asynchronous-persistence baseline
in Figure 4.9(b).

4.5.3 Durability Guarantees

We now check if Cap’s implementation correctly ensures durability of
read data items in the presence of failures. To do so, we developed a
framework that can drive the cluster to different states by injecting crash
and recovery events. Figure 4.10 shows an example sequence. At first, all
nodes are alive; then nodes 1, 3 crash; 1 recovers; 2 crashes; 3 recovers; fi-
nally, 2 recovers. In addition to crashing, we also randomly choose a node
and introduce delays to it; such a lagging node may not have seen a few
updates. For example, [112345 — 245 — 1245 — 145 — 134[5|— 12345
shows how nodes 1, 2, and 5 experience delays in a few states.

At each intermediate state, the framework inserts new items and reads

a few items. For instance, in Figure 4.10, item a is written and read back



110

Outcomes (%)
a
o
2| £ .| =
2 E g 2|3
et o]
g 5 sl 8| ¢
7 A O | A| ¥
g immediate | 100 | O 0
'g eventual 50 [ 50 | 39
S Cap 87 [13] 0
= immediate | 100 | O 0
% eventual 50 [ 50 | 50
- Cap 100/ 0] o

Table 4.2: Durability. The table shows the durability-experiment results for the
three durability models.

in the first state; b is written and a is read again in the second state and so
on. At the end, the framework recovers all nodes and issues reads to all
inserted items. If any item is lost, we flag the sequence as data loss; if any
previously read item is lost, we additionally flag the sequence as read-data
loss (a subset of the general data-loss case). Using the framework, for a
five-node cluster, we generated 500 random sequences similar to the one
in Figure 4.10. We first subject the unmodified versions of ZooKeeper to
the sequences; then, we do the same for Cap.

Table 4.2 shows the results. In this experiment, eventually durable
ZooKeeper and Cab persist asynchronously but replicate synchronously.
Our first workload issues reads to a randomly chosen set of acknowledged
items; we call these reads “random”.

ZooKeeper with immediate durability, as expected, does not lose any
data in any of the 500 sequences. With asynchronous persistence, ZooKeeper
loses data in 50% of cases and more importantly, loses data that has been
read by the clients in 39% of cases. Cap, in contrast, never loses data that



111

has been read: state that has been made visible on reads is always recov-
ered (0% read-data loss). Cap loses some (unread) items in some cases;
this is the basic tradeoff that Cap makes, delaying the durability of data
that has not been read for high performance. However, compared to even-
tually durable ZooKeeper, Cap significantly reduces the data loss cases
(from 50% to 13%) due to its periodic flushes and read-triggered durabil-
ity. We note that the numbers do not denote the likelihood of data loss;
rather, they reflect what happens when the system is stressed.

Cap can recover all written data, irrespective of failures, if a request
successfully reads the last-inserted item. To show this aspect, we conduct
a slightly different experiment in which we use the same crash sequences
but perform a read of the last-inserted item at each intermediate state
(“latest”). In such cases, as shown in the second part of the table, even-
tually durable ZooKeeper loses data in about 50% of cases; in contrast,
Cabp recovers all data, avoiding any data-loss instances, behaving similar
to immediately durable ZooKeeper.

4.54 Summary

Cabp is significantly faster than immediate durability (that is optimized
with batching) while matching the performance of eventual durability for
many workloads. Even for workloads that mostly read recently modified
items, Cap’s overheads are small. Our implementation of Cap ensures

that data that has been read by clients is always durable.

4.6 Implementing cao in Redis

So far, we discussed how we implemented and evaluated Cap in ZooKeeper.
We now demonstrate that Cap applies to other systems as well. We also
show that implementing Cap requires only moderate developer effort, re-
quiring minimal code changes. To this end, we implement Cap in Redis,



112

another widely used leader-based system. In this section, we first provide
an overview of Redis and then describe our implementation. We then
evaluate the performance of our implementation and compare it against

baseline Redis.

4.6.1 Redis Overview

Redis is a popular leader-based data structure store. Clients submit write
requests to the leader which appends the update to an on-disk append-
only file and then replicates the update to the followers. Similar to ZooKeeper,
Redis also has two baselines. In the fully asynchronous baseline, Redis
performs both replication and persistence asynchronously, i.e., updates
are acknowledged immediately after they have been buffered in memory
on the leader; this is the default configuration in Redis. We also configure
Redis to replicate synchronously (using the WAIT option [139]) but persist
asynchronously to obtain the second baseline. In both the baselines, Re-
dis issues fsync in the background periodically (every second).

Cap-Redis follows the same code path of the baseline for updates.
However, upon reads, it performs the durability check and enforces dura-
bility if necessary before serving reads.

We compare the baselines and Cap-Redis against an immediately durable
version of Redis which performs both replication and persistence syn-
chronously. We obtain this immediately durable configuration by setting
appropriate values for the WAIT and the appendfsync options.

4.6.2 Redis Implementation

We implement Cap in Redis v4.0.11. Native Redis does not perform auto-
matic failover (i.e., if the current leader fails, it does not elect a new leader
automatically). Thus, we use Redis with sentinel [138] which enables au-

tomatic failover. Our implementation took only a moderate developer



113

effort: we added or changed less than 1K LOC in Redis. Further, imple-
menting Cap required little changes to the rest of the system.

Compared to the ZooKeeper implementation, two additional changes
were required. First, we added new structures to quickly lookup the
update-index of an item because Redis does not have such a structure un-
like ZooKeeper. Upon reads, Cap-Redis looks up this structure to per-
form the durability check. Second, Redis does not ensure that the leader
always has all the committed data unlike ZooKeeper, i.e., a node that has
not seen some updates may be elected the leader. This is because although
the sentinel requires a majority vote to choose the new leader, it does not
take into account the node’s last log index. We thus modified the leader
election to take a node’s last log index into consideration during election.
This modification ensures that the chosen node has all the data that has
been read so far, thus ensuring the correctness of Cab.

4.6.3 Performance

We now evaluate the performance of Cap in Redis. In addition to the
workloads described in §4.5, we also run workloads LOAD and C; LOAD
is a write-only workload and C is a read-only workload. Similar to ZooKeeper,
we compare the Cap version of Redis (Cap-Redis) againstimmediate-Redis
(that uses synchronous replication and synchronous persistence) and eventual-
Redis. Figure 4.11 shows the result. In (a), eventual-Redis and Cap-Redis
perform both replication and persistence lazily; in (b), eventual-Redis and
Cap-Redis perform replication synchronously but persist to storage lazily.
Similar to ZooKeeper, Cap offers performance benefits when compared
to immediate durability in Redis as well. Also, Cap closely matches the
performance of eventual durability in Redis for most workloads.
As shown in Figure 4.11(a), for write-heavy (load, A, and F) and read-
heavy (B) workloads, Cap-Redis is notably faster (2.14 x-4.14 x) than immediate-
Redis and adds only little overhead when compared to eventual-Redis



114

B immediate M eventual ¥ cad

% 80- I~ 7 ©
[0}
S 60 UN)E é NN
5401 o8 3= 7 W7 Pz <3
292 s W
22w MW
o 0 Z Z Z Z Z Z
< LOAD A B C D F
= Workload
(a) Baseline: async persistence

M immediate M eventual % cad
3100 o9
2 g 5 mm, 3
a N 20N ©
S 60- o 7 B 3a
X S NG 2 Z =  ©9
so1 == g M Iy B
ol Vel a/ V.
AR A A A MY
o 0 Z Z Z Z Z Z
c LOAD A B C D F
= Workload

(b) Baseline: async replication & persistence

Figure 4.11: Redis Performance. The figure compares the throughput of im-
mediate, eventual, and Cap durability layers in Redis. In (a), eventual and CaAp syn-
chronously replicate but asynchronously persist; in (b), they replicate and persist lazily.
The number on top of each bar shows the performance normalized to that of immediate
durability.

(about 10% lower throughput). In the worst-case read-latest workload
(D), Cap-Redis offers 22% lower throughput than eventual-Redis but is
still 77% faster than immediate-Redis.

Figure 4.11(b) shows the performance results when the baseline em-

ploys asynchronous replication and persistence. Compared to the case



115

when the baseline replicates synchronously (i.e., Figure 4.11(a)), the dif-
ference in performance between Cap-Redis and eventual-Redis is slightly
higher (e.g., 14% lower throughput instead of 10% for workload-B). At
the same time, Cap-Redis is significantly faster than immediate-Redis for
many workloads (for example, 6.22x higher throughput instead of 4.14 x
for workload-A).

Overall, implementing Cap in another system was fairly straightfor-
ward, requiring only minimal code changes. Furthermore, similar to the
ZooKeeper case, Cap-Redis offers significant performance benefits over
immediately durable Redis and closely approximates the performance of
eventually durable Redis.

4.7 Discussion

In this section, we discuss how Cab can be beneficial for current systems
and deployments, and how it can be implemented in other classes of sys-
tems (e.g., leaderless ones). We then discuss how Cap offers benefits even
with the advent of fast storage devices.

Application usage. As we discussed, most widely used systems lean to-
wards performance and thus adopt eventual durability. Cap’s primary
goal is to improve the guarantees of such systems. By using Cap, these
systems and applications atop them can realize stronger semantics with-
out forgoing the performance benefits of asynchrony. Further, little or no
modifications in application code are needed to reap the benefits that Cap
offers.

A few applications such as configuration stores [65] cannot tolerate
any data loss and so require immediate durability upon every write. While
Cap may not be suitable for this use case, a storage system that imple-
ments Cap can support such applications. For example, in Cap, applica-

tions can optionally request immediate durability by specifying a flag in



116

the write request (of course, at the cost of performance). Alternatively, an
application can ensure the durability of all the data it wrote so far by issu-
ing a read to the latest written item; read-triggered durability ensures that
the entire state up to the last update that modifies the item are durable.

A few applications may be write-heavy and read the latest written
data items. In such cases, Cab might simply shift the cost of synchronous
operations from writes to reads and might offer little or no benefits over
immediate durability. Since immediate durability offer better guarantees,
in such worst-case scenarios, the system could detect this workload be-
havior and shift to using immediate durability. We leave this dynamic
switching as an avenue for future work. However, we believe that most
real-world workloads do not immediately read what they wrote (similar
to the YCSB workloads we evaluated in §4.5.2).

Cabp for other classes of systems. While we apply Cap to leader-based
systems in this paper, the idea also applies to other systems that establish
no or only a causal order of updates. However, a few changes compared
to our implementation for leader-based systems may be required. First,
given that there is no single update order, the system may need to main-
tain metadata for each item denoting whether it is durable or not (instead
of a single durable-index). Further, when a non-durable item x is read,
instead of making the entire state durable, the system may make only up-
dates to x or ones causally related to x durable. We leave such extension

as an avenue for future work.

Cap for sharded systems. In this dissertation, we implement Cap in non-
sharded storage systems. Several storage systems such as ZooKeeper,
etcd, and LogCabin are used in non-sharded deployments and thus our
ideas and implementation can be readily applied. However, many de-
ployments need to use sharding to scale horizontally. We believe Cap can
be used as-is or extended to suit such needs. First, if the shards are in-
dependent and do not have write dependencies across them, then Cap



117

can be applied as described in this chapter. When a request reads a non-
durable item on a shard, only items within that shard (that the item be-
ing read depends upon) need to be made durable. However, if there are
write dependencies across shards, then a read of an item on one shard
may require communication with another shard to make the dependent
updates durable. In such cases, we believe the leaders of the different
shards can exchange information (specifically, their local durable index)
in the background; thus, in many cases, one can expect the dependencies
to be already durable and hence may not require communication in the

synchronous path of reads.

Advent of faster storage. Our evaluation shows that Cap can offer signif-
icantly higher performance than immediate durability when using slow
storage (e.g., SSDs) within the data centers. We now discuss if these ben-
efits will still hold with the advent of faster storage (e.g., NVM).

If a system must use synchronous replication and if it uses asynchronous
persistence for better performance, then using NVMs can offer better guar-
antees at nearly the same performance. However, Cabp still offers signif-
icant benefits in the following two scenarios. First, while faster devices
alleviate the costs of persistence, in the wide-area, synchronous replica-
tion will still incur large network latencies. Thus, a system that asyn-
chronously replicates with Cap can obtain higher performance than an
immediately durable system. Second, even within the data center, Cap
would deliver ~2 x lower latencies compared to immediate durability. As-
suming NVM to be as fast as DRAM, the second row of Table 4.1 approx-
imately represents the performance of a system that synchronously repli-
cates and synchronously persists to NVMs; in such cases, asynchronous
replication with Cap would offer 2.4x higher performance as shown in
Table 4.1.



118

4.8 Summary and Conclusions

In this chapter, we show how the underlying durability model of a dis-
tributed system has strong implications for its consistency and perfor-
mance. We present consistency-aware durability (Cap), a new approach
to durability in distributed storage systems. Cap shifts the point the sys-
tem makes data durable from writes to reads: data is made durable before
it is made visible to clients upon reads. By delaying durability of writes,
Cap achieves high performance. However, by guaranteeing the durability
of data that has been read, Cap enables stronger consistency. In the next
chapter, we discuss how to realize stronger consistency atop Cap with
high performance.

While enabling stronger consistency, Cap may not be suitable for a
few applications that cannot tolerate any data loss. However, it offers a
new, useful middle ground for many systems that currently use eventual
durability to realize stronger semantics without compromising on perfor-

mance.



119

5

Building Strong Consistency upon
Consistency-aware Durability

In the previous chapter, we introduced consistency-aware durability (Cap),
a new durability model for distributed systems that can enable stronger
consistency with high performance. In this chapter, we discuss how we
realize one such stronger consistency property that we refer to as cross-
client monotonic reads atop Cap. Cross-client monotonicity cannot be real-
ized efficiently without a consistency-aware layer: immediate durability
can enable it but is slow; on the other hand, it simply cannot be realized
upon eventual durability.

Cross-client monotonic reads guarantees that a read from a client will
return a state that is at least as up-to-date as the state returned to a pre-
vious read from any client. Cross-client monotonic reads provide these
guarantees even in the presence of failures and across client sessions.
Such guarantees can be useful for applications such as location sharing,
social media timelines, and shopping carts. This property can be also ben-
eficial in edge-computing scenarios, where clients may reconnect to the
storage system often because of frequent disconnections or mobility; in
such scenarios, cross-client monotonicity can provide strong guarantees
across client sessions.

Cap, while necessary, is not sufficient if the system needs to ensure

cross-client monotonicity while allowing reads at many replicas. To this



120

end, we introduce active sets, a lease-based technique that ensures mono-
tonic reads while allowing reads at many nodes. With active sets, the
system can permit clients to read at nearby replicas, making it well suited
for geo-replicated settings.

We design and implement cross-client monotonic reads upon the Cap
version of ZooKeeper to build Orca. We experimentally show that Orca
provides strong guarantees while closely matching the performance of
weakly consistent ZooKeeper. Compared to strongly consistent ZooKeeper,
Orca provides significantly higher throughput (1.8 — 3.3x), and notably
reduces latency, sometimes by an order of magnitude in geo-distributed
settings. This chapter is based on the later parts of the paper, Strong and
Efficient Consistency with Consistency-Aware Durability, published in FAST
20 [60].

The chapter is organized as follows. We first discuss the tradeoffs be-
tween performance and consistency in distributed systems (§5.1). We
then discuss how Cap helps overcome this tradeoff and introduce our
new consistency model, cross-client monotonic reads (§5.2). Next, we de-
scribe the design and implementation of Orca (§5.3). Next, we present
our evaluation (§5.4). We also demonstrate how the guarantees provided
by Orca can be useful in two application scenarios (§5.5). Finally, we sum-

marize and conclude (§5.6).

5.1 Consistency vs. Performance

As we discussed in the previous chapter (§4.1), linearizability or strong
consistency is expensive. A key reason linearizability or strong consis-
tency incurs high overheads is that it often requires immediate durabil-
ity; preventing stale and out-of-order reads require data to be durable in
the critical path of writes. These synchronous writes make a linearizable

system too slow: within a data center, immediate durability is about 10x



121

acknowledged [3

a | a
updates 1 21 3
< S
S
4o
o
S
< S
S
4o
o
S
time

Figure 5.1: Linearizability. The figure shows possible values clients can observe
upon reads in a linearizable system. The system has acknowledged updates a1, ap, and
az. Time flows from left to right.

slower than asynchronous durability.

Immediate durability, while necessary, is not sufficient to prevent out-
of-order and stale reads; additional mechanisms are required. For ex-
ample, consider a linearizable system [92] that synchronously persists an
update on a majority. In such a system, it is possible for a minority of fol-
lowers to have not seen this update and so be lagging. Without additional
mechanisms, a client might read the updated state that contains the latest
state from the leader and a later request from the same or a different client
might notice an older state if it reads from the lagging followers, violat-
ing linearizability. A few linearizable systems, to prevent such situations,
allow reads only at the leader [80, 92, 108, 119]. Also, the leader before
serving a read contacts a majority to check if it is deposed by a new leader
t. These mechanisms enable a linearizable system to prevent out-of-order
and stale reads.

Linearizability not only offer strong guarantees within a single client

T Additional mechanisms (e.g., duplicate request filtering [87]) are required for lin-
earizability but immediate durability and leader restriction are the ones that affect the
performance the most.



122

acknowledged
Q1 H |3
updates
a,—a ™M
1 2 E iy E QN
ge e ©
(18] (18]
(] (]
S S
mm
I e
] <
ol o
S
time

Figure 5.2: Causal Consistency. The figure shows possible values clients can
observe upon reads in a causally consistent system. The system has acknowledged updates
a1, ap, and as; updates a; and ay are causally related.

session but also across clients. For instance, consider the example shown
in Figure 5.1, where the storage system has acknowledged updates a;, a,,
and as. A linearizable system will not serve a client an updated state (a3)
at one point and subsequently serve an older state (a; or ay) to any client.
Further, when a client crashes and recovers, it is guaranteed to read what
it read in its previous session or a later state (i.e., it won’t go back in time).

However, restricting reads to one node severely limits read through-
put; further, it prevents clients from reading from their nearest replica, in-
creasing read latencies (especially in geo-distributed settings where clients
have to incur wide-area latencies to reach the leader). Consequently, prac-
tical systems allow reads at many nodes [103, 107, 120, 140] (at the cost of
strong consistency).

While linearizability is expensive, weaker models such as causal con-
sistency, monotonic reads, and eventual consistency are performant. This
is because weakly consistent systems are often built atop performant even-
tual durability (as discussed earlier). However, a weakly durable system

can expose stale and out-of-order reads. For example, an application may



123

read a data item that is buffered on the memory of a server; upon a failure
of the server, in a different client session, the application can read from the
same server and notice that the item is lost (the server lost data buffered
in memory during the failure), exposing out-of-order states. However,
this scenario does not violate guarantees such as causal consistency and
monotonic reads; while these consistency models provide in-order reads,
they do so only within a single client and not across clients. Consider
the example shown in Figure 5.2, where the storage system has acknowl-
edged updates aj, ap, and az and updates a; and a; are causally related.
While a causally consistent system will not serve a; to client; at one point
and subsequently serve a; to the same client (client;), it can serve a; to
another client (client,).

Weakly consistent systems can expose non-monotonic states also be-
cause they usually allow reads at many nodes [40]. For example, a client
can reconnect to a different server after a disconnection, and may read
an older state in the new session if a few updates have not been repli-
cated to this server yet. For the same reason, two client sessions to two
different servers from a single application may receive non-monotonic
states. While the above cases do not violate causal consistency by defini-
tion (because it is a different client session), they lead to poor semantics

for applications.

5.2 Stronger and Efficient Consistency with
CAD

We now discuss how the seemingly conflicting goals of strong consistency
and high performance can be realized together in a storage system upon
a durability layer that is consistency-aware. We first describe the new
consistency property. We then discuss its utility and finally discuss the

importance of allowing reads at many nodes.



124

acknowledged N
updates
_ _ o
G B ARG B
o ] ©
(18] (18]
(] (]
S S
— [s2]
s |€
9 ©
(]
S
time

Figure 5.3: Cross-client Monotonic Reads. The figure shows possible val-
ues clients can observe upon reads under our new consistency model. The system has
acknowledged updates a1, ay, and as.

5.2.1 Cross-client Monotonic Reads and CAD

We first observe that eventual durability can lose data arbitrarily upon
failures, and so prevents the realization of both non-stale and monotonic
reads together. While preventing staleness requires expensive immediate
durability upon every write, we note that monotonic reads across failures
can be useful in many scenarios and can be realized efficiently upon a
consistency-aware durability (Cap) layer we introduced in the previous
chapter.

To this end, we introduce cross-client monotonic reads, a new consis-
tency property that offers strong guarantees. This property guarantees
that a read from a client will always return a value that is at least as up-
to-date as the value returned to a previous read from any client, irrespec-
tive of server and client failures, and across sessions. Figure 5.3 shows
possible values clients can observe under this property. As shown, once
client; observes a,, client; and client, should observe at least a,.

While linearizability provides this property, it does so at the cost of
performance; immediate durability and leader-restricted reads make a



125

linearizable system too expensive. Weaker consistency models built atop
eventual durability cannot provide this property. Even sequential consis-
tency which is weaker than linearizability but stronger than models such
as causal consistency does not provide this property. Note that cross-
client monotonicity is a stronger guarantee than the traditional monotonic
reads that ensures monotonicity only within a session and in the absence
of failures [23, 96, 170].

We realize cross-client monotonic reads efficiently upon Cap. Recall
that the key idea behind Cab is to shift the point of durability to reads
from writes. By allowing writes to be completed asynchronously, Cab
achieves high performance. However, by enforcing durability before reads
i.e.,, by ensuring that data is replicated and persisted before it is read by
clients, Cap enables monotonic reads even across failures. Cross-client
monotonicity cannot be realized efficiently without a consistency-aware
layer: immediate durability can enable it but is slow; it simply cannot be
realized upon eventual durability as it can lose data items that have been
read upon failures.

We note that cross-client monotonic reads does not prevent staleness.
However, it avoids exposing out-of-order states to applications and can

be useful in many scenarios, as we discuss next.

5.2.2 Utility of Cross-client Monotonic Reads

We observe that out-of-order states provide confusing semantics for many
real-world applications. As a simple example, consider the view count of
a video hosted by a service; such a counter should only increase mono-
tonically. However, in a system that can lose data that has been read,
clients can notice counter values that may seem to go backward. As an-
other example, in a location-sharing service, it might be possible for a
user to incorrectly notice that another user went backwards on the route,
while in reality, the discrepancy is caused by the underlying storage sys-



126

tem that served the updated location, lost it, and thus later reverted to an
older one. Or, consider a social-media application, where users see some
posts in their timelines only to go back and not find those posts again. A
system that offers cross-client monotonic reads avoids such cases under
all scenarios, providing better semantics.

On the other hand, consider a system that provides causal consistency.
Such a system would ensure that causally related operations are seen in
order across client sessions: a client observes an effect only after observ-
ing the cause of the effect. For example, consider the social-media appli-
cation we discussed above. If the application is built upon a causally con-
sistent system, a user will never see a response to a post before seeing the
postitself. Or, if a user X posts a status after they change their privacy set-
tings to exclude another user Y from viewing their posts, Y will never see
X’s later posts. Causal consistency would also ensure that users see posts
in order within a single client session; for example, if a user sees a com-
ment to a post in a session and views the post again in the same session,
the user will at least see the comments they saw earlier. However, causal
consistency does not ensure monotonic reads across client sessions. For
example, a user could see the comment (effect) and its post (cause) in
one session and in a later session see neither or the post alone (although,
causal consistency would prevent the case where the comment alone is
seen). Similarly, in the privacy-setting example, with causal consistency,
user Y can notice that they cannot view X’s posts in a session; then, in a
later session, Y can notice that they can view X’s older posts (causal con-
sistency would prevent Y from seeing X’s later posts). A system that offers
cross-client monotonic reads would provide better semantics by avoiding

these out-of-order states across the client sessions.



127

5.2.3 Need for Scalable Cross-client Monotonic Reads

To ensure cross-client monotonic reads, most existing linearizable sys-
tems restrict reads to the leader, affecting scalability and increasing la-
tency. In contrast, a system that provides cross-client monotonic reads
while allowing reads at multiple replicas offers attractive performance
and consistency characteristics in many use cases. First, it distributes the
load across replicas and enables clients to read from nearby replicas, of-
fering low-latency reads in geo-distributed settings. Second, similar to
linearizable systems, it provides monotonic reads, irrespective of failures,
and across clients and sessions which can be useful for applications at the
edge [110]. Clients at the edge may often get disconnected and connect
to different servers (for example, due to user mobility), but still can get

monotonic reads across these sessions.

5.3 ORCA Design

We now describe Orca, a leader-based majority system that implements
cross-client monotonic reads upon Cap. We use a weakly consistent sys-
tem built atop eventual durability as the baseline to highlight how Orca
is different from it. Orca aims to perform similarly to this baseline but
enable stronger consistency. We first outline Orca’s guarantees (§5.3.1).
Next, we explain how we realize cross-client monotonic reads while al-
lowing reads at many nodes (§5.3.2). Finally, we explain how Orca cor-
rectly ensures cross-client monotonic reads (§5.3.5) and describe our im-
plementation (8§5.3.6).

5.3.1 Guarantees

As discussed earlier (in §2.3), in leader-based systems, a leader establishes
a single order of updates. Orca preserves the properties of a leader-based



128

acknowledged a |65
updates
3 o~
5
©
(]
) S
< ~
o] (3]
(18]
(]
S
time

Figure 5.4: Orca Guarantees. The figure shows possible values clients can observe
upon reads with Orca. The system has acknowledged updates ay, by, ap, and by. Once
client; notices by, further reads must notice all updates upto by; thus, a later read from
client, to item a notices a,.

system that uses eventual durability, i.e., it provides sequential consis-
tency. However, in addition, it also provides cross-client monotonic reads
under all failure scenarios (e.g., even if all replicas crash and recover), and
across sessions. Recall that in Cap, when a read for an item 1 is served,
Cap guarantees that the entire state up to the last update that modifies 1
(say L) are durable. Similarly, Orca built atop Cap ensures that if reads
expose an updated state (up to the last update L) at one point to a client,
Orca will not later expose an older state (that does not include some up-
dates before L) to any client, as shown in Figure 5.4. Orca is different from
linearizable systems in that it does not guarantee that reads will never see
stale data.

Majority-based systems remain available as long as a majority of nodes
are functional [20, 120]; Orca ensures the same level of availability. Orca
ensures the same level of availability as the eventually-durable baseline;
for example, ZooKeeper remains available when a majority of nodes are

up and connected to each other; Orca maintains the same level of avail-



129
ability.

5.3.2 Cross-Client Monotonic Reads with Leader

Restriction

In the previous chapter, we have discussed how Cap ensures that state
that has been read by clients remains durable. We now describe how
upon such a durability primitive, we build cross-client monotonic reads
efficiently.

If reads are restricted only to the leader, a design that many lineariz-
able systems adopt, then cross-client monotonic reads is readily provided
by Cap; no additional mechanisms are needed. Given that updates go
only through the leader, the leader will have the latest data, which it will
serve on reads (if necessary, making it durable before serving). Further, if
the current leader fails, the new view will contain the state that was read.
Thus, monotonic reads are ensured across failures.

However, restricting reads only to the leader limits read scalability and
prevents clients from reading at nearby replicas. Most practical systems
(e.g., MongoDB, Redis), for this reason, allow reads at many nodes [103,
107, 140]. However, when allowing reads at the followers, Cap alone can-
not ensure cross-client monotonic reads. Consider the scenario in Fig-
ure 5.5. The leader S; has served versions a; and a; after making them
durable on a majority. However, follower S5 is partitioned and so has not
seen ay. When a read later arrives at Ss, it is possible for S5 to serve aj;
although Ss checks that a; is durable, it does not know that a has been
updated and served by others, exposing non-monotonic states. Thus, ad-

ditional mechanisms are needed which we describe next.



130

read(a) read(a)
L — " a | —= a | a a | a
A BN E— 2 1 2
3, q,
S, 4 a | % Q|
S, g » G ! » G !
S, a, q | & 4 | 2
re————-----;read(@) r————------;
1
S5 a, oA :.__..a_l’ a, :
1

Figure 5.5: Non-monotonic Reads. The figure shows how non-monotonic states
can be exposed atop Cap when reading at the followers.

5.3.3 Scalable Reads with Active Set

A naive way to solve the problem shown in Figure 5.5 is to make the data
durable on all the followers before serving reads from the leader. How-
ever, such an approach would lead to poor performance and, more im-
portantly, decreased availability: reads cannot be served unless all nodes
are available. Instead, Orca solves this problem using an active set. The
active set contains at least a majority of nodes. Orca enforces the following
rules with respect to the active set.

R1: When the leader intends to make a data item durable (before serving a
read), it ensures that the data is persisted and applied by all the members
in the active set.

R2: Only nodes in the active set are allowed to serve reads.

The above two rules together ensure that clients never see non-monotonic
states. R1 ensures that all nodes in the active set contain all data that has
been read by clients. R2 ensures that only such nodes that contain data
that has been previously read can serve reads; other nodes that do not
contain the data that has been served (e.g., S5 in Figure 5.5) are precluded
from serving reads, preventing non-monotonic reads. The key challenge

now is to maintain the active set correctly.



131

. read(a)
SHaTa,] ——[a]a, 4 |2
a
2
S, a, |a, a, |a, a, |a,
S; |4 |2, » a |4, » a, |4,
S, a, a, |a, a, |a,
==  readld) —/—=
1 | E——— I
S5 [a & I E— !
- : a == :
a, written read at L; S later
active set:{12345} L hastily removes serves a,

55 from active set

Figure 5.6: Active Set and Leases: Unsafe Removal of Follower. The
figure shows how if the leader removes a follower hastily then the system can expose non-
monotonic states.

5.3.4 Active Set Membership using Leases

The leader constantly (via heartbeats and requests) informs the followers
whether they are part of the active set or not. The active-set membership
message is a lease [31, 63] provided by the leader to the followers: if a
follower F believes that it is part of the active set, it is guaranteed that
no data will be served to clients without F persisting and applying the
data. The lease breaks when a follower does not hear from the leader for
a while. Once the lease breaks, the follower cannot serve reads anymore.
The leader also removes the follower from the active set, allowing the
leader to serve reads by making data durable on the updated (reduced)
active set.

To ensure correctness, a follower must mark itself out before the leader
removes it from the active set. Consider the scenario in Figure 5.6, which
shows how non-monotonic states can be exposed if the leader removes

a disconnected follower from the active set hastily. Initially, the active



132

read(a) <
rt triggered
q; |13, mt must have 4 |2

passed for S,

q; |13, - q |13,

remove S
a, la 5 a, la
1172 from active set: 1172
:'""": {12345} — {1234} :' """ :
1 a1 1 1 a'1 ]
1 1 1 1
L cannot commit L can now
a, in active set; safely serve a,
wait for rt

Figure 5.7: Active Set: Two-step Breaking of Lease. The figure shows how
ORrca breaks leases in two steps.

set contains all the nodes, and so upon a read, the leader tries to make
ap durable on all nodes; however, follower S5 is partitioned. Now, if the
leader removes S5 (before S5 marks itself out) and serves ay, it is possible
for S5 to serve aj later, exposing out-of-order states. Thus, for safety, the
leader must wait for S5 to mark itself out and then only remove S5 from
the active set, allowing the read to succeed.

Orca breaks leases using a two-step mechanism: first, a disconnected
follower marks itself out of the active set; the leader then removes the fol-
lower from the active-set. Orca realizes the two-step mechanism using
two timeouts: a mark-out timeout (mt) and a removal timeout (rt); once
mt passes, the follower marks itself out; once rt passes, the leader removes
the follower from the active set. Orca sets rt significantly greater than mt
(e.g., vt >= 5+ mt) and mt is set to the same value as the heartbeat in-
terval. Figure 5.7 illustrates how the two-step mechanism works in Orca.
The performance impact is minimal when the leader waits to remove a

failed follower from the active set. Specifically, only reads that access (re-



133

cently written) items that are not durable yet must wait for the active set
to be updated; the other vast majority of reads can be completed without
any delays.

Like any lease-based system, Orca requires non-faulty clocks with a
bounded drift [63]. By the time rt passes for the leader, mt must have
passed for the follower; otherwise, non-monotonic states may be returned.
However, this is highly unlikely because we set rt to a multiple of mt; it
is unlikely for the follower’s clock to run too slowly or the leader’s clock
to run too quickly that 7t has passed for the leader but mt has not for the
follower. In many deployments, the worst-case clock drift between two
servers is as low as 30 us/sec [61] which is far less than what Orca ex-
pects. Note that Orca requires only a bounded drift, not synchronized
clocks.

On aread, a follower checks if it is a part of the active set. The follower
then checks if the item being read is durable by comparing the update-
index of the item with the durable-index (sent by the leader during heart-
beats). If the durability check passes, the follower serves the read; else,
it redirects the request to the leader which then makes the read durable
on the active set. When a failed follower recovers (from a crash or a par-
tition), the leader adds the follower to the active set. However, the leader
ensures that the recovered node has persisted and applied all entries up
to the durable-index before adding the node to the active set. Sometimes,
a leader may break the lease for a follower G even when it is constantly
hearing from G, but G is operating slowly (perhaps due to a slow link
or disk), increasing the latency to flush when a durability check fails. In
such cases, the leader may inform the follower that it needs to mark itself
out and then the leader also removes the follower from the active set.

The size of the active set presents a tradeoff between scalability and
latency. If many nodes are in the active set, reads can be served from them

all, improving scalability; however, reads that access recently written non-



134

durable data can incur more latency because data has to be replicated
and persisted on many nodes. In contrast, if the active set contains a bare
majority, then data can be made durable quickly, but reads can be served
only by a majority.

Deposed leaders. A subtle case that needs to be handled is when a leader
is deposed by a new one, but the old leader does not know about it yet.
The old leader may serve some old data that was updated and served
by the other partition, causing clients to see non-monotonic states. Orca
solves this problem with the same lease-based mechanism described above.
When followers do not hear from the current leader, they elect a new
leader but do so after waiting for a certain timeout. By this time, the old
leader realizes that it is not the leader anymore, steps down, and stops

serving reads.

5.3.5 Correctness

Orca never returns non-monotonic states, i.e., a read from a client always
returns at least the latest state that was previously read by any client. We
now provide a proof sketch for how Orca ensures correctness under all
scenarios.

First, when the current leader is functional, if a non-durable item (whose
update-index is L) is read, Orca ensures that the state at least up to L is
persisted on all the nodes in the active set before serving the read. Thus,
reads performed at any node in the active set will return at least the lat-
est state that was previously read (i.e., up to L). Followers not present
in the active set may be lagging but reads are not allowed on them, pre-
venting them from serving an older state. When a follower is added to
the active set, Orca ensures that the follower contains state at least up to
L; thus any subsequent reads on the added follower will return at least

the latest state that was previously read, ensuring correctness. When the



135

leader removes a follower, Orca ensures that the follower marks itself out
before the leader returns any data by committing it on the new reduced
set, which prevents the follower from returning any older state.

When the current leader fails, Orca (similar to Cap) ensures that latest
state that was read by clients survives into the new view, and thus future
active sets. Let us suppose that the latest read has seen state up to index
L. Because Orca persists the data on all the nodes in the active set and
given that the active set contains at least a majority of nodes, at least one
node in any majority will contain state up to L on its disk. Thus, only a
candidate that has state at least up to L can get votes from a majority and
become the leader. Thus, the latest state that was read by clients survives

into the new view.

5.3.6 Implementation

We build Orca by implementing the above design of cross-client mono-
tonic reads atop the Cap version of ZooKeeper (described in §4.4). Com-
pared to the Cab implementation, the following additional changes were
required. We modified the replication requests and responses in ZooKeeper
to maintain the active-set lease. Instead of setting durable-index to the
highest persisted-index among at least a majority as in Cap in Orca we
set the durable-index as the maximum index that has been persisted and
applied (to the state machine) by all nodes in the active set. We set the
different timeouts as follows. We set the follower mark-out timeout to the
same value as the heartbeat interval (100 ms in our implementation). We
set the removal timeout to 500 ms. The leader adds a follower to the active
set when the follower has caught up and responds to three consecutive
requests promptly.



136

5.4 Evaluation

We now evaluate the performance of Orca against two versions of ZooKeeper:
strong-ZK and weak-ZK. Strong-ZK is ZooKeeper with immediate dura-
bility (with batching), and with reads restricted to the leader; strong-ZK
provides linearizability and thus cross-client monotonic reads. Weak-
ZK replicates and persists writes asynchronously, and allows reads at all
replicas; weak-ZK does not ensure cross-client monotonic reads. Orca
uses the Cap durability layer and reads can be served by all replicas in
the active set; we configure the active set to contain four replicas in our
experiments. We use the same experimental setup as the one described
in the previous chapter (§4.5). In our evaluation, we ask the following

questions:

* What are the benefits of allowing reads at multiple nodes?

* How does Orca perform compared to weakly consistent ZooKeeper
and strongly consistent ZooKeeper?

* What benefits does Orca offer in geo-replicated settings?

* Does Orca ensure cross-client monotonic reads in the presence of

failures?

5.4.1 Read-only Micro-benchmark

We first demonstrate the benefit of allowing reads at many replicas using
a read-only benchmark. Figure 5.8 plots the average latency against the
read throughput for the three systems when varying the number of clients
from 1 to 100. Strong-ZK restricts reads to the leader to provide strong
guarantees, and so its throughput saturates after a point; with many con-
current clients, reads incur high latencies. Weak-ZK allows reads at many
replicas and so can support many concurrent clients, leading to high through-
put and low latency; however, the cost is weaker guarantees as we show



137

1200 T T " T T
strong-zk —+—
— 1000 weak-zk = = |
3 800 orca - -® - -
g 600 .
2400 o
— 200 S =
0 | | | | | |
0 50 100 150 200 250 300
Throughput (Kops/sec)

Figure 5.8: Orca Performance: Read-only Micro-benchmark. The figure
plots the average latency against throughput by varying the number of clients for a read-
only workload for the three systems.

soon (8§5.4.4). In contrast, Orca provides strong guarantees while allow-
ing reads at many replicas and thus achieving high throughput and low
latency. The throughput of weak-ZK and Orca could scale beyond 100
clients, but we do not show that in the graph.

5.4.2 YCSB Macro-benchmarks

We now compare the performance of Orca against weak-ZK and strong-
ZK across different YCSB workloads. As we described earlier (§4.5), YCSB
workloads are representative of applications such as session stores, photo-
tagging, and user status updates. These workloads capture the read-write
patterns exhibited by real-world applications; for example, workload D
in YCSB has a latest access pattern where most reads access the recently
written data items. Our goal in this experiment is to demonstrate the per-
formance benefits of ORCA under these real-world workloads. We run
this experiment with 10 clients. Figure 5.9 shows the results.

In Figure 5.9(a), weak-ZK and Okrca carry out both replication and
persistence lazily; whereas, in 5.9(b), weak-ZK and Orca replicate syn-
chronously but persist to storage lazily, i.e., they issue fsync-s in the back-



138

< M strong-zk M weak-zk % orca

3 60 S~ 2

? gg 23 gg ig

X401 2 7 » %

— , o / Y/

Lol 2l 2l -l

o=l ml w2

"m0

g | 7 7. W7

= A B D F
Workload

(a) Baseline: async replication & persistence

S M strong-zk M weak-zk % orca

& 60- S o S

g e N o

X 40 - ' — - [0

g 40 % - % a ;f\li_

£ 201 / - / 2 %

E ). Z. Z. Z

= A B D F
Workload

(b) Baseline: async persistence

Figure 5.9: Orca Performance. The figure compares the throughput of the three
systems across different YCSB workloads. In (a), weak-ZK and Orca asynchronously
replicate and persist; in (b), they replicate synchronously but persist data lazily. The
number on top of each bar shows the performance normalized to that of strong-ZK.

ground. As shown in Figure 5.9(a), Orca is notably faster than strong-ZK
(3.04 — 3.28 x for write-heavy workloads, and 1.75 - 1.97 x for read-heavy
workloads). Orca performs well due to two reasons. First, it avoids the
cost of synchronous replication and persistence during writes. Second, it
allows reads at many replicas, enabling better read throughput. Orca also
closely approximates the performance of weak-ZK: Orca is only about

11% slower on an average. This reduction arises because reads that ac-



139

dc-2

lan
de-1 VV followers ———-C'i
|
% followers “n ;'i

dc-3

Figure 5.10: Geo-distributed Experiment. The figure shows how the replicas
and clients are located across multiple data centers in the geo-distributed experiment.

cess non-durable items must persist data on all the nodes in the active set
(in contrast to only a majority as done in Cap); further, reads at the follow-
ers that access non-durable data incur an additional round trip because
they are redirected to the leader. Similar results and trends can be seen

for the asynchronous-persistence baseline in Figure 5.9(b).

5.4.3 Performance in Geo-Replicated Settings

We now analyze the performance of Orca in a geo-replicated setting by
placing the replicas in three data centers (across the US), with no data
center having a majority of replicas. The replicas across the data center
are connected over WAN. We run the experiments with 24 clients, with
roughly five clients near each replica. Figure 5.10 shows this setup. In
weak-ZK and Orca, reads are served at the closest replica; in strong-ZK,
reads go only to the leader. In all three systems, writes are performed
only at the leader.

Figure 5.11 shows the distribution of operation latencies across differ-
ent workloads. We differentiate two kinds of requests: ones originating
near the leader (the top row in the figure) and ones originating near the



140

100 ‘ ‘ : - ————
g 75 | 1k :
= [
§ 50 M { = 14x i
= 25 f 1 h -
0 |

5 100 re——— : : ‘ [T——— :
2 s n | ~
% 50 1<14~X,, 1 L ,‘,22(,, |
= I I
= 25 ' T B 1 1
N O I I I I I I I I I I

20 40 60 80 20 40 60 80

Latency (ms) Latency (ms)
(a) Read-only (b) Write-only
) 1 f- - | | | '7,: ' 100 ~ close-up
..g 75 1 N~ 1 1 ,,T‘,,_‘.
o 50 | reads queued behind{ [ 3% -
=~ 25 H writes in strong-zk | |/ [.J,‘,‘_ | |
~ i 4_/’ 95730 40
0

s 100 == ===
-z T
it=) 1 [ == ==l B
= 25 1 .
.\‘:/ O I I I I |

20 40 60 80 20 40 60 80

Latency (ms) Latency (ms)
(c) Read-heavy (YCSB-B) (d) Write-heavy (YCSB-A)
strong-zk weak-zk = - orca - - -

Figure 5.11: Geo-distributed Latencies. The figure shows the distribution
of operation latencies across different workloads in a geo-distributed setting. For each
workload, (i) shows the distribution of latencies for operations originating near the leader;
(ii) shows the same for requests originating near the followers. The ping latency between
a client and its nearest replica is <2ms; the same between the client and a replica over
WAN is ~35 ms.



141

followers (the bottom row). As shown in Figure 5.11(a)(i), for a read-only
workload, in all systems, reads originating near the leader are completed
locally and thus experience low latencies (~2 ms). Requests originating
near the followers, as shown in 5.11(a)(ii), incur one WAN RTT (~33 ms)
to reach the leader in strong-ZK; in contrast, weak-ZK and Orca can serve
such requests from the nearest replica and thus incur 14 x lower latencies.

For a write-only workload, in strong-ZK, writes originating near the
leader must incur one WAN RTT (to replicate to a majority) and disk
writes, in addition to the one local RTT to reach the leader. In contrast, in
weak-ZK and Orca, such updates can be satisfied after buffering them in
the leader’s memory, reducing latency by ~14x. Writes originating near
the followers in strong-ZK incur two WAN RTTs (one to reach the leader
and other for majority replication) and disk latencies; such requests, in
contrast, can be completed in one WAN RTT in weak-ZK and Orca, re-
ducing latency by ~2x.

Figure 5.11(c) and 5.11(d) show the results for workloads with a read-
write mix. As shown, in strong-ZK, most operations incur high latencies;
even reads originating near the leader sometimes experience high laten-
cies because they are queued behind slow synchronous writes as shown
in 5.11(c)(i). In contrast, most requests in Orca and weak-ZK can be com-
pleted locally and thus experience low latencies, except for writes origi-
nating near the followers that require one WAN RTT, an inherent cost in
leader-based systems (e.g., 50% of operations in Figure 5.11(d)(ii)). Some
requests in Orca incur higher latencies because they read recently modi-
fied data. However, only a small percentage of requests experience such
higher latencies as shown in Figure 5.11(d)(i).

Orca performance summary. By avoiding the cost of synchronous repli-
cation and persistence during writes, and allowing reads at many repli-
cas, Orca provides higher throughput (1.8 —3.3x) and lower latency than
strong-ZK. In the geo-distributed setting, Orca significantly reduces la-



142

tency (14 x) for most operations by allowing reads at nearby replicas and
hiding WAN latencies with asynchronous writes. Orca also approximates
the performance of weak-ZK. However, as we show next, Orca does so

while enabling strong consistency guarantees that weak-ZK cannot offer.

5.4.4 ORCA Consistency

We now check if Orca’s implementation correctly ensures cross-client mono-
tonic reads in the presence of failures and also test the guarantees of
weak-ZK and strong-ZK under failures. To do so, we used the crash-
testing a framework described in the previous chapter (§4.5). The frame-
work drives the cluster to different states by injecting crash and recovery
events and message delays. At each intermediate cluster state of a crash
sequence, we insert new items and perform reads on the non-delayed
nodes. Then, we perform a read on the delayed node, triggering the node
to return old data, thus exposing non-monotonic states. Every time we
perform a read, we check whether the returned result is at least as latest
as the result of any previous read. Using the framework, we generated
500 random sequences. We subject weak-ZK, strong-ZK, and Orca to the
generated sequences.

Table 5.1(a) shows results when weak-ZK and Orca synchronously
replicate but asynchronously persist. With weak-ZK, non-monotonic reads
arise in 83% of sequences due to two reasons. First, read data is lost in
many cases due to crash failures, exposing non-monotonic reads. Second,
delayed followers obliviously serve old data after other nodes have served
newer state. Strong-ZK, by using immediate durability and restricting
reads to the leader, avoids non-monotonic reads in all cases. Note that
while immediate durability can avoid non-monotonic reads caused due
to data loss, it is not sufficient to guarantee cross-client monotonic reads.
Specifically, as shown in the table, sync-ZK-all, a configuration that uses
immediate durability but allows reads at all nodes, does not prevent lag-



143

Outcomes (%)
System .
Correct | Non-monotonic
weak-ZK 17 83
strong-ZK 100 0
sync-ZK-all 63 37
Orca 100 0

(a) Async persistence

Outcomes (%)
System -
Correct | Non-monotonic
weak-ZK 4 96
strong-ZK 100 0
sync-ZK-all 63 37
Orca 100 0

(b) Async replication & persistence

Table 5.1: Orca Correctness. The tables show how Orca provides cross-client
monotonic reads. In (a), weak-ZK and Orca use asynchronous persistence; in (b), both
replication and persistence are asynchronous.

ging followers from serving older data, exposing non-monotonic states.
In contrast to weak-ZK, Orca does not return non-monotonic states. In
most cases, a read performed on the non-delayed nodes persists the data
on the delayed follower too, returning up-to-date data from the delayed
follower. In a few cases (about 13%), the leader removed the follower from
the active set (because the follower is experiencing delays). In such cases,
the delayed follower rejects the read (because it is not in the active set);
however, retrying after a while returns the latest data because the leader
adds the follower back to the active set. Similar results can be seen in Ta-
ble 5.1(b) when weak-ZK and Orca asynchronously replicate and persist



144

writes.

5.5 Application Case Studies

We now show how the guarantees provided by Orca can be useful in two
application scenarios. The first one is a location-sharing application in
which an user updates their location (e.g., a =+ b — c) and another user
tracks the location. To provide meaningful semantics, the storage system
must ensure monotonic states for the reader; otherwise, the reader might
incorrectly see that the user went backwards. While systems that pro-
vide session-level guarantees can ensure this property within a session,
they cannot do so across sessions (e.g., when the reader closes the ap-
plication and re-opens, or when the reader disconnects and reconnects).
Cross-client monotonic reads, on the other hand, provides this guarantee
irrespective of sessions and failures.

We test this scenario by building a simple location-tracking applica-
tion. A set of users constantly update their locations on the storage sys-
tem, while another set of users constantly read those locations. We use
the following workload mix: 50% update-location and 50% read-location.
A set of 100 users connect to five application servers that run the location-
tracking application. Each user connects to different servers over the life-
time of the experiment. We introduce delays between servers to create
lagging nodes.

Table 5.2 shows result. As shown, weak-ZK exposes inconsistent (non-
monotonic) locations in 13% of reads and consistent but old (stale) loca-
tions in 39% of reads. In contrast to weak-ZK, Orca prevents non-monotonic
locations, providing better semantics. Further, it also reduces staleness
because of prior reads that make state durable. As expected, strong-ZK
never exposes non-monotonic or old locations.

The second application is similar to Retwis, an open-source Twitter



145

Location-tracking Retwis
Outcome(%)
weak- | strong- o weak- | strong- o
ZK | zK | M| ozk | oz | TR

Inconsistent 13 0 0 8 0 0
Consistent

(old) 39 0 7 20 0 12

Consistent | 4o | 400 | 93 | 72 | 100 | 88

(latest)

Table 5.2: Case Study: Location-tracking and Retwis. The table shows how
applications can see inconsistent (non-monotonic), and consistent (old or latest) states
with weak-ZK, strong-ZK, and ORcA.

clone [148]. Users can either post tweets or read their timeline (i.e., read
tweets from users they follow). If the timeline is not monotonic, then
users may see some posts that may disappear later from the timeline, pro-
viding confusing semantics [40]. Cross-client monotonic reads avoids this
problem, providing stronger semantics for this application.

We run this experiment with 100 users where some users are popular
(i.e., they have many followers). The workload in this application is read-
dominated: most requests retrieve the timeline, while a few requests post
new content. We thus use the following workload mix: 70% get-timeline
and 30% posts, leading to a total of 95% reads and 5% writes for the stor-
age system. The users connect to one of the five application servers with
each user connecting to different servers at different points in time. To
create nodes that are lagging, we introduce delays between the replicas.
Non-monotonic reads can be exposed under two cases: first, when a user
sees a post and it disappears later; second, when one user sees an older
post than what other users have seen so far.

Results are similar to the previous case study. Weak-ZK returns non-

monotonic and stale timelines in 8% and 20% of get-timeline operations,



146

respectively. Orca completely avoids non-monotonic timelines and re-
duces staleness, providing better semantics for clients.

While we show that the guarantees provided are useful for applica-
tions we have not analyzed whether or not Orca can simplify the recovery
code employed by applications to handle inconsistent states. However,
we believe that Orca may potentially reduce the complexity of recovery
code that handles stale and out-of-order data; specifically, such code now
is freed from handling out-of-order data and may be less frequently in-
voked to handle stale version given that Orca reduces staleness. More-
over, on systems built atop eventual durability, both writers and readers
have to deal with data loss. With Orca, only writers have to deal with
data loss. For example, in the former, readers may have taken some ac-
tion based on some data that they have read and they might later notice
that is not true; therefore, the readers might have to perform some roll
backs. This recovery code can be avoided with Orca. We leave this study

of how Orca reduces developer complexity as an avenue for future work.

5.6 Summary and Conclusions

A major focus of distributed storage research and practice has been the
consistency model a system provides. Most of this focus has been to-
wards how a system behaves in the presence of concurrent operations
from clients under different consistency models. However, only a little
attention has been paid towards another important aspect: the behavior
of the system under failures such as replica crashes and client crashes. In
this thesis, we bridge this gap by analyzing how failures and data dura-
bility affect the consistency guarantees a system provides.

In this chapter, we introduced, cross-client monotonic reads, a new con-
sistency model that provide stronger guarantees: it prevents out-of-order

states even in the presence of failures and across client sessions. We de-



147

signed Orca, a design of cross-client monotonic reads atop Cap for leader-
based majority systems. We introduced the concept of active sets to pro-
vide cross-client monotonicity while allowing reads at multiple replicas.
We implemented a prototype of Orca in ZooKeeper. We showed that
Orca offers significantly higher throughput (1.8 - 3.3x) compared to strongly
consistent ZooKeeper (strong-ZK) and closely matches the performance
of weakly consistent ZooKeeper (weak-ZK). Through a series of robust-
ness test, we showed that Orca provides cross-client monotonic reads
under hundreds of failure sequences; in contrast, weak-ZK returns non-
monotonic states in many cases. We also demonstrated how the guaran-

tees provided by Orca could be useful in two application scenarios.



148

§)
Related Work

In this chapter, we discuss other pieces of work that are related to this
dissertation. We start by discussing the various studies that motivate our
analysis of distributed systems on how they react to storage faults (§6.1).
We then describe efforts related to storage fault injection (§6.2) and ana-
lyzing distributed system reliability (§6.3). We then discuss how the new
durability primitive and consistency property introduced in this disserta-
tion compare with existing work (§6.4 and §6.5). We finally describe how
Cap and Orca are related to other efforts that aim to improve distributed

system performance (§6.6).

6.1 Corruption and Errors in Storage Stack

Several past studies have analyzed storage errors and corruption in de-
tail [24, 25,97, 112, 155, 156]. Specifically, Bairavasundaram et al. [25] and
Schroeder et al. [155] show the prevalence of latent sector errors in disks.
Similarly, studies have also shown the prevalence of data corruption in
the real world [24, 124]. Furthermore, studies have shown that cheap
near-line disks are more prone to errors and corruption than enterprise-
class devices [22]. Since large-scale deployments often tend to use cheap
hardware (and build reliability into the software), problems such as disk

errors and corruption are increasingly important in such deployments.



149

These prior studies motivated us to study the effects of such faults in dis-

tributed storage systems.

6.2 Storage Fault Injection

Given the prevalence of storage faults in hard disks and SSDs, prior work
has studied the effect of these faults in storage systems. As we discuss in
this section, most of the prior work has focused on local storage systems
such as file systems (§6.2.1) and stand-alone databases (§6.2.2). While our
work draws from both bodies of work, it is unique in its focus on testing
behaviors of distributed systems to storage faults.

6.2.1 File-system Studies

Our work on distributed storage reliability analysis was inspired by prior
studies that analyze how local file systems such as ext3, IBM JFS, ReiserFS,
and ZFS react to storage faults [26, 130, 187]. These studies carefully inject
disk faults just beneath the file system and observe how the file system
reacts to the fault.

The injection methodology used in these studies is type-aware: faults
are not injected at random; rather, they are injected into various specific
on-disk structures of the file system in a targeted fashion. Type-aware
fault injection helps in quickly exercising several file-system code paths
compared to random fault injection. The fault-injection methodology in
Corps is similar in that it introduces faults in a targeted way into various
application-level on-disk structures.

The results from the file-system studies show that some file systems
(such as ext3) do not employ checksums for user data and simply propa-
gate corruption to applications. The results also show that some file sys-
tems (such as ZFS) use checksums for user data and hence transform an

underlying corruption into read errors. These results imply that applica-



150

tions running atop local file systems that desire to maintain data integrity

have to handle such situations, motivating our study.

6.2.2 Studies on Layers Above the File System

A few studies [164, 186] have analyzed how applications running atop
local file systems react to storage faults. For example, Subramanian et
al. [164] study how the MySql database engine reacts to disk corruptions.
Similarly, Zhang et al. [186] study how file synchronization services (such
as Dropbox) react in the presence of local file-system corruption. How-
ever, none of these prior studies examined distributed storage systems
that are central in today’s data centers. We believe our work is the first
to comprehensively examine the effects of storage faults across many dis-
tributed storage systems. Our study is unique in that while single-machine
applications rarely have ways to recover from local storage faults, dis-
tributed systems have an opportunity to do so, which our work examines.
In our follow-on work [10]*, we inject storage faults into RSM (repli-
cated state machine) systems, a special class of distributed system. While
the study presented in the first part of the thesis uses a simple failure
model in which we inject only one storage fault on one node at a time,
the follow-on work explores a more sophisticated failure model. It in-
troduces storage faults on multiple nodes, introduces additional failures
such as partitions, and explores scenarios such as the presence of lagging
nodes. Therefore, the follow-on work uncovers more problems in some
of the systems (such as LogCabin and ZooKeeper) we studied in this the-
sis. The follow-on work also proposes a solution for the crash-corruption
entanglement problem we introduce in this thesis which is an essential

piece to correctly recover from storage faults in RSM systems.

fnot a part of this dissertation



151

6.3 Analyzing Distributed System Reliability

Our work on analyzing the reliability of distributed systems to storage
faults is related to prior research and efforts towards examining distributed
system correctness. This class of work includes model checking, fault in-
jection, and bug studies. In this section, we discuss each of these related
efforts towards analyzing distributed system reliability. At a high level,
while all these approaches find reliability problems, none of them focuses

on storage faults like our work.

6.3.1 Model Checkers and Bug Finding Tools

Several model checkers have succeeded in uncovering bugs in distributed
systems [67, 88, 183]. These model checkers directly check the correctness
of the implementation and expose corner-case bugs by exercising differ-
ent possible reordering of events; for instance, the checkers reorder net-
work messages, inject crashes and reboots to find bugs. Corps exposes
bugs that cannot be discovered by model checkers; model checkers typ-
ically do not inject storage-related faults. Moreover, our targeted fault-
injection framework can examine large storage systems faster than model
checkers, which typically suffer from state-space explosion.

Similar to model checkers, tools such as Jepsen [83] that test distributed
systems are complementary to Corbs. Jepsen tests the guarantees pro-
vided by a system as follows. The tool issues several concurrent opera-
tions to the system and introduces network partitions. It then heals the
partition and checks whether or not the distributed system violates any
guarantees. For example, it checks if writes were lost and if the system
violated some consistency or isolation guarantee that it is supposed to
provide. Corps is different in that it introduces storage faults. We believe
one could combine these tools to uncover other vulnerabilities that cannot

be detected by either of these tools in isolation.



152

Our previous work [12], Pacg, studies how file-system crash behav-
iors affect distributed systems. However, the faults introduced by Pace
occur only upon a crash, unlike block corruption and errors introduced
by Corbs. Pack also discovered some of the problems exposed by Corbs.
For example, when a node crashes during an update, it results in a cor-
ruption because of the partially updated data. Such corruptions caused
by crashes were undetected by Redis, and therefore, Pace also discovered
the problem where Redis spreads corrupted data to many nodes. How-
ever, Corps exposes additional problems not exposed by Pace because of
the targeted injection of storage faults.

6.3.2 Generic Fault Injection

Our work is also related to efforts that inject faults into systems and test
their robustness [28, 64, 157, 172]. Several efforts have built generic fault
injectors for distributed systems [49, 69, 162]. Most of these fault-injection
frameworks aim to inject various types of faults and also emphasize the
portability of the framework to several platforms and systems. For exam-
ple, Han et al., described Doctor [69], a comprehensive framework that
can inject processor, memory, and communication faults. Corps differs

from generic fault injectors through its specific focus on storage faults.

6.3.3 Bug Studies

A few recent bug studies [66, 184] have given insights into common prob-
lems found in distributed systems. Gunawi et al. [66] perform a compre-
hensive study of over twenty thousand bug reports of systems such as
HDFS, HBase, and Cassandra. Among the bugs they study, some issues
are related to data integrity; for example, HDFS detects a corruption but
does not perform recovery correctly in some cases. Yuan et al. [184] show

that 34% of catastrophic failures in their study are due to unanticipated



153

error conditions. Our results also show that systems do not handle read
and write errors well; this poor error handling leads to harmful global
effects in many cases.

We believe that bug studies and fault injection studies are complemen-
tary to each other; while bug studies suggest constructing test cases by
examining sequences of events that have led to bugs encountered in the
wild, fault injection studies like ours concentrate on injecting one type of

fault and uncovering new bugs and design flaws.

6.4 Durability Semantics

We now discuss durability models that are similar to Cap, introduced in
Chapter 4. Cap’s durability semantic has a similar flavor to that of a few
local file systems that delay durability for performance. Xsyncfs [115] de-
lays writes to disk until the written data is externalized; data is external-
ized when a response is printed on the output screen or when a message
is sent via the network. By delaying durability, Xsyncfs realizes high per-
formance similar to an asynchronous file system while providing strong
guarantees similar to a synchronous file system. Similarly, file-system de-
velopers have proposed the 0_RSYNC flag [76] that provides similar guar-
antees to Cap. Although not implemented by many kernels [76], when
specified in open, this flag blocks read calls until the data being read has
been persisted to the disk.

While Cab has similarities to these ideas, prior work resolves the ten-
sion between durability and performance in a much simpler single-node
setting and within the file system. In contrast, to the best of our knowl-
edge, our work is the first to do so in replicated storage systems and in
the presence of complex failures (e.g., network partitions).

BarrierFS’ fbarrier [181] and OptFS’ osync [38] provide delayed dura-
bility semantics similar to Cap; however, unlike Cap, these file systems



154

do not guarantee that data read by applications will remain durable after
crashes. Moreover, similar to Xsyncfs and 0_RSYNC, these efforts focus on
local file systems unlike Cap.

Prior research on building distributed systems such as Blizzard [100]
and RAMCloud [121, 163] employ asynchronous durability for perfor-
mance. For example, RAMCloud introduces a buffered logging approach
to durability where operations are synchronously logged to the memory
of replicas but not persisted to disks in the critical path. Hence, the sys-
tem may lose data in the presence of failures. Similarly, Blizzard [100]
also employs delayed durability and provides prefix writes (i.e., only the
tail of the recent updates may be lost). Cap, similar to these systems, also
may lose the tail of recent updates. However, unlike these systems, Cap
guarantees the durability of data that has been read by clients. Conse-
quently, while it is possible to build cross-client monotonic reads atop
Cap, it is hard to realize it in prior systems. However, we believe the idea
of read-triggered durability can be applied to systems such as Blizzard to

improve its guarantees while maintaining high performance.

6.5 Cross-client Monotonic Reads

Several consistency models have been proposed in distributed systems lit-
erature [176]. These range from strong consistency property such as lin-
earizability [70], intermediate causal [91] and session [169] consistency
models, to weak models such as eventual consistency [52]. Our work
focuses on the interaction of consistency and durability; specifically, we
show how durability affects consistency. Lee et al., identify and describe
the durability requirements to realize linearizability [87]. In contrast, we
study in more detail what consistency levels can be realized upon differ-
ent durability models; further, we also explore how to design a new dura-

bility primitive that enables strong consistency with high performance.



155

To the best of our knowledge, cross-client monotonic reads is pro-
vided only by linearizability [87, 119]. However, linearizable systems re-
quire immediate durability and most linearizable systems prevent reads
at the followers. Orca offers this property without immediate durability
while allowing reads at many nodes. Other models such as causal consis-
tency [23, 91, 96] do not provide in-order cross-client consistency because
their guarantees hold only within a single client session and not across
client sessions.

Gaios [29] offers strong consistency while allowing reads from many
replicas. Although Gaios distributes reads across replicas, requests are
still bounced through the leader and thus incur an additional delay to
reach the leader. The leader also requires one additional round trip to
check if it is indeed the leader, increasing latency further. In contrast,
Orca allows clients to directly read from the nearest replica, enabling both
load distribution and low latency. Orca avoids the extra round trip (to
verify leadership) by using leases.

CRAQ [167] offers strong consistency for systems that use chain repli-
cation while allowing reads from all nodes. However, CRAQ is optimized
for read-mostly workloads. Moreover, while reads incur low latencies in
chain replication, writes incur high latencies; the latency incurred is pro-
portional to the number of replicas and is often higher than the write
latency incurred in immediately durable leader-based majority systems.
In contrast, Orca offers low-latency writes by using Cap.

Orca’s use of leases to provide strong consistency is similar to how
prior systems use leases for similar purposes. For example, early work
on distributed file systems has used leases to maintain client-side cache
consistency [63].



156

6.6 Improving Distributed System

Performance

Several approaches to improving the performance of distributed systems
have been proposed. These approaches improve performance by using
client-side speculation [65, 114, 179], server-side speculation [79, 81], ex-
ploiting commutativity [109] and network ordering [89, 128], and using
inconsistent replication [185]. However, these prior approaches do not fo-
cus on addressing the overheads of data durability, an important aspect in
storage systems which our work on Cap addresses. Further, most of these
approaches focus on state machine replication, while our work examines
and applies new ideas to a broader class of replicated storage systems.

Orca avoids durability overheads by separating consistency from fresh-
ness: reads can be stale but never out-of-order. LazyBase [40] applies a
similar idea to analytical processing systems in which reads access only
older versions that have been fully ingested and indexed. However, such
an approach often returns staler results than a weakly consistent system.
In contrast, Orca never returns staler data than a weakly consistent sys-
tem; further, Orca reduces staleness compared to weak systems by per-
sisting data on many nodes upon reads (as shown by our experiments).

Saucr [11] reduces durability overheads in the common case but com-
promises on availability for strong durability in rare situations (e.g., in
the presence of many simultaneous failures). Orca makes the opposite
tradeoff: it provides better availability but could lose a few recent updates
upon failures. Moreover, the ideas proposed in Saucr are applicable only
within a data center. In contrast, Orca provides benefits for both single
data-center and geo-replicated settings.



157

v

Conclusions and Future Work

Distributed storage systems have a simple but important goal: to store
critical data durably. However, this seemingly simple goal is hard to re-
alize in the presence of failures. In this dissertation, we studied the dura-
bility of distributed storage systems in the presence of failures that arise
while and after the system makes data durable. We also proposed effi-
cient methods for achieving durability and stronger consistency in these
systems.

To keep user data safe, a distributed system redundantly stores many
copies of data. The common expectation is that if one of the replicas fail,
the system can still recover the data from other copies. However, in the
first part of our dissertation, we showed that most modern distributed
storage systems do not effectively use redundancy as a source of recovery
to recover from faults that arise in the local storage layer of the individual
replicas. We showed that even a single corruption or an inaccessible block
in one of the nodes could result in data loss, unavailability, and spread of
corruption from a corrupted replica to other intact replicas.

Ensuring durability of data in the critical path of a client request is ex-
pensive. On a write, a distributed system must replicate the data to many
servers and force the data to the storage devices; these operations result
in significant performance degradation. Many practitioners, therefore,

turn off such synchronous operations in the critical path, for performance.



158

However, such systems may lose data and provide weak guarantees when
failures happen.

Therefore, in the second part of this dissertation, we presented solu-
tions that offer both strong guarantees and excellent performance. We in-
troduced consistency-aware durability (Cap), that shifts the point of durabil-
ity from writes to reads. Delaying durability of writes provides high per-
formance; however, ensuring that data is durable before it is read enables
strong consistency even in the presence of failures. Finally, we showed
how a strong consistency property called cross-client monotonic reads could
be realized upon Cap. This new consistency property can be beneficial in
geo-distributed settings and edge-computing scenarios and can be useful
in many application scenarios.

In this chapter, we first summarize each part of this dissertation (§7.1)
and present the various lessons we learned through the course of this

dissertation work (§7.2). We then discuss some directions for future work

(§7.3).

7.1 Summary

We now provide a summary of the three parts of this dissertation.

7.1.1 Storage Faults Analysis

Modern distributed storage systems depend upon local file systems to
store and manage data. The storage devices underneath the local file sys-
tem may sometimes return corrupted data on a read; at times, a block on
the storage medium may become inaccessible. Therefore, in the first part
of this thesis, we studied how modern distributed storage systems react
to such storage faults and whether these faults affect the durability of data
in these systems.



159

To this end, we built a fault-injection framework called Corps that sys-
tematically injects storage faults into applications that run atop local file
systems. Our fault model is simple: we injected only a single storage
fault on one replica at a time. Given that there are multiple intact copies
of data, the common expectation is that redundancy will enable recovery
from local storage faults. For instance, if one of the copies of the data item
in the system gets corrupted, users would expect that the corrupted data
will be recoverable from the intact copies on other replicas and that the
users never see the corrupted data.

However, out study revealed that the reality is different from this com-
mon expectation: redundancy does not imply fault tolerance in many sys-
tems we studied. In many cases, a single storage fault on one replica re-
sulted in problematic outcomes such as data loss, silent user-visible cor-
ruption, unavailability, query failures, or sometimes even the spread of
corrupted data to other intact replicas. We found that these outcomes
arise due to some fundamental root causes in storage fault tolerance that
are common to many distributed storage systems. First, faults were of-
ten undetected locally by replicas, leading to harmful effects. Second,
even when systems reliably detected faults, in most cases, they simply
crashed instead of using redundancy to recover from the fault. Third,
many systems did not discern corruptions caused due to crashes from
storage corruptions, resulting in many data-loss cases. Then, we found
that local fault-handling behaviors and global distributed protocols in-
teracted in unsafe manners, leading to propagation of corruption or data
loss. Finally, redundancy was underutilized as a source of recovery from
storage faults.

7.1.2 Consistency-aware Durability

In the second part of the thesis, we focused on how systems make data
durable, which has strong implications on both consistency and perfor-



160

mance. We found that two durability models are popular and most ex-
isting systems use either one of them. With immediate durability, when
a client performs an update, the writes are replicated and persisted on
many nodes before acknowledging clients. With eventual durability, writes
are only lazily replicated and persisted after buffering it on the memory
of one or a few nodes. Immediate durability enables strong consistency
but at a high cost: poor performance. In contrast, with eventual durabil-
ity, high performance can be realized, but this model leads to weak se-
mantics, exposing stale and out-of-order data to applications. However,
many deployments prefer eventual durability for performance, settling
for weaker guarantees.

To this end, we introduced consistency-aware durability or Cap that
provides stronger guarantees than eventual durability without forgoing
performance. The key idea behind Cap is to shift the point the system
makes data durable from writes to reads. By committing writes asyn-
chronously, Cap achieves high performance; however, unlike eventual
durability, Cap guarantees the durability of data items (through synchronous
operations, if necessary) before serving out reads, enabling stronger guar-
antees even in the presence of failures. In most real-world workloads, it
is natural that reads do not immediately follow writes, enabling Cap to
realize high performance.

We designed and implemented Cabp for leader-based majority systems
by modifying ZooKeeper. We showed that ZooKeeper with Cap performs
significantly (1.5x —3x) faster than immediately durable ZooKeeper. Cap
closely matches the performance of eventually durable ZooKeeper for
many workloads. However, as we showed, Cap provides better guaran-
tees than eventually durable ZooKeeper and enables one to build stronger

consistency.



161

7.1.3 Cross-client Monotonic Reads

In the last part of the thesis, we introduced cross-client monotonic reads,
a new consistency model. Cross-client monotonicity guarantees that a
read from a client will return a state that is at least as up-to-date as the
state returned to a previous read from any client, irrespective of failures
and across client sessions. Among the existing consistency models, these
guarantees are only provided by linearizability; however, linearizability
is expensive as it requires writes to be immediately durable. In contrast,
we showed that Cap enables cross-client monotonicity to be realized with
high performance.

We designed cross-client monotonicity upon the Cap version of ZooKeeper
to build Orca. In addition to using a consistency-aware durability layer,
Orca uses additional mechanisms to allow reads at many nodes (unlike
many practical linearizable systems that restricts reads to the leader). Through
rigorous experiments, we showed that Orca provides strong consistency
while approximating the performance of weakly consistent ZooKeeper.
Orca provides significantly higher throughput (1.8x — 3.3 x) compared
to strongly consistent ZooKeeper and notably reduces latency (by order

of magnitude) in geo-distributed settings.

7.2 Lessons Learned

In this section, we present a list of general lessons we learned while work-
ing on this dissertation.

Even battle-tested systems can fall short in reliability measures. When
we started working on the storage fault analysis project, we initially ex-
pected the systems we studied to handle storage faults reasonably well
partly because most of them are widely used in practice. We did not ex-

pect to find serious vulnerabilities such as data loss and silent corruption.



162

Although we expected to find some implementation-level bugs that will
be triggered due to code paths that are rarely tested, we did not expect
to find fundamental problems that are common to many systems. How-
ever, through the course of the work, we realized that even battle-tested
systems have reliability problems. More broadly, we believe while it is im-
portant to channel research and development efforts towards improving
performance, it is even more critical to pay attention to reliability. How-
ever, our study in this dissertation suggests that this is not the case at
least with respect to storage-fault tolerance in many modern distributed
storage systems.

Systems lack uniform approaches to storage fault handling. In the first
part of this thesis, we discovered several problems related to storage fault
handling in distributed systems. The underlying cause for most of these
problems is that there is no unified approach to handling storage faults
across systems. A vast body of work [34, 77, 85, 117, 120] exists on how to
tolerate fail-stop, fail-recover, and Byzantine failures in distributed sys-
tems. However, we learned that only scant attention has been paid to
problems that arise at the local storage layer and that there is no wide-
spread knowledge on how to build storage-fault-tolerant distributed sys-
tems. Our dissertation takes the initial but important step in this direc-

tion.

Decoupling of concerns and paying attention to lower layers can be
beneficial. One of the contributions of the thesis is separating the con-
cerns of durability and consistency and focusing on the underlying dura-
bility layer. This separation resulted in many benefits. First, it enabled
the understanding of how the underlying durability layer affects the con-
sistency guarantees that a system can provide. Next, it also allowed us to
focus on failures: while consistency models mainly focus on how a sys-
tem behaves in the presence of concurrent client operations, looking at the

durability layer separately enabled us to focus on the system behavior in



163

the presence of failures. Finally, it also enabled us to rethink the dura-
bility layer to build a new durability primitive that enables both stronger
consistency and high performance.

Building reliability-testing tools is important. We believe that it is im-
portant to build tools that test the reliability of existing systems. While
recent research has taken strides in building new storage systems that
are verified for correctness [36, 37, 158], we believe that building tools is
still critical to improving the reliability of existing systems. For example, in
Chapter 3, we built a fault-injection tool using which we discovered many
previously unknown problems related to storage fault tolerance in exist-
ing distributed systems. The tool also helped expose some fundamen-
tal shortcomings in these systems in the way they handle storage faults.
Fixing the problems we found can significantly improve the reliability of
these systems. Overall, we believe finding and fixing reliability problems
is a promising way to improve the reliability of existing systems.

Testing tools can be used to check not only existing systems and expose
problems in them, but they can also be used to test the robustness of the
solutions we build. For example, in Chapters 4 and 5, we developed a rig-
orous cluster crash-testing framework that introduces complex sequences
of failure events such as node crashes, node recoveries, partitions, and de-
lays. Putting our system through hundreds of failure sequences helped us
identify and fix corner-case bugs in our implementation; it also exposed
problems in the unmodified baselines.

7.3 Future Work

In this section, we outline directions in which our work could be extended

in the future.



164

7.3.1 Storage Faults in Blockchain Systems

In this thesis, we focused on analyzing the durability of modern distributed
storage systems that are part of a single administrative domain. One inter-
esting avenue of future work is to explore the reliability of decentralized
systems such as blockchains [111, 182] through systematic fault injection,
specifically by introducing faults in the local storage layer of the nodes in
the network.

Blockchains, in essence, are replicated storage systems that store data
upon many commodity computers. Each node, in turn, uses a local stor-
age stack to store a copy of the ledger. If blockchains are implemented
poorly, an unsafe interaction with storage stack can result in catastrophic
outcomes such as denial-of-service attacks, hard chain forks, and even
double spending of money. Unsurprisingly, storage failures have caused
severe problems in blockchains in the wild [2-5, 150]. Despite such dev-
astating consequences, little has been done to systematically study how
blockchain implementations tolerate faults that arise at the storage layer.
Moreover, ledger-based systems are more prone to storage faults given
their decentralized nature; many diverse, commodity computers with
less reliable hardware and software participate in the network. Thus, we
find it imperative to study and understand the resiliency of blockchains

to storage faults in a principled manner.

7.3.2 Cap for Other Systems

In this thesis, we designed and implemented a new durability model
(Cap) for distributed storage systems that have a single leader and require
a majority of nodes to be available. However, the idea behind Cab is gen-
eral and can be applied to other classes of systems that do not have a sin-
gle leader or are available even when more than a majority of nodes have

failed. These classes of systems include practical systems such as Cassan-



165

dra [13] and Riak [149], and systems built by prior research [23, 91, 96].

However, applying Cap to other systems is not straightforward and
requires solving a few challenges. Most systems that do not have a single
leader do not establish a single total ordering of operations. They might
establish only a partial order such as ordering only causally-related op-
erations; some systems may not even establish a causal order. In leader-
based systems, checking for the durability of a data item is simple: Cap
maintains a single durable index for the entire system that indicates the
index of the latest update that is durable. Since all updates are ordered,
the durability of a data item can be determined based on whether or not
the index of the latest update that modified the data item is greater than
the durable index. However, for systems that do not establish this total or-
dering, it is not sufficient to maintain a single durable index for the entire
system. Instead, the system might need to maintain metadata for each
item denoting whether it is durable or not.

Moreover, the guarantee of what items are durable on a read would
differ. In our Cap implementation, when a non-durable item x is read,
Cap makes the entire state (containing all updates up to the latest update
that modified x) durable. For other classes of systems, the system might
need to make only the updates to x or those updates that are causally
related to x durable.

Another challenge is related to implementing cross-client monotonic
reads on top of Cap for these highly available systems. Systems such as
Cassandra are available for reads and writes even when only a single node
is up. In such cases, to provide strong guarantees while maintaining high
availability is challenging. For example, a node that is partitioned will
not be part of the active set in Orca; such a design may not be feasible
with systems such as Cassandra. Maintaining multiple versions of data
and serving only versions that have reached all the nodes may help ad-

dress this problem. However, this design may increase staleness and thus



166

requires more careful thought.

Another type of system that future work could consider is distributed
file systems. Distributed file systems such as HDFS [14] and Ceph [35]
write to all replicas in the synchronous path of writes. In these systems,
the idea of Cap can be applied; writes can be made asynchronous to im-
prove performance. However, ensuring that writes are durable before

serving reads can provide strong guarantees for clients.

7.3.3 Transactions upon Cap and Orca

In this thesis, we focus on non-transactional storage systems such as key-
value stores where each request updates or reads only a single data item.
However, some replicated systems provide support for transactions where
each transaction may access multiple data items. We believe it would
be interesting to explore how to apply the ideas of Cap and Orca for
such systems. While Cap may not be able to support immediate dura-
bility of transactions, we believe that one can build strong isolation guar-
antees such as serializability on top of Cap. Serializability [6], while a
strong isolation guarantee and often considered to be a gold-standard for
databases, does not require transactions to be ordered in real-time. So, a
transaction T, that begins in real-time after another transaction T; need
not see the effects of operations performed as part of T;. Cap and cross-
client monotonic reads can enable one to build stronger guarantees by
ensuring that if a transaction T, notices the effects of Ty, then all subse-
quent transactions will notice the effects of T; as well.

Another aspect that future work can build upon is studying the inter-
action between Cap and sharding. In this dissertation, we focused on a
single shard that is replicated. However, as we discussed in §2.1, most dis-
tributed systems partition their data into multiple shards, and each shard
is replicated. A distributed transaction might access data items across
multiple shards. Therefore, while making data items durable in a shard,



167

the system might need to keep track of data items that need to be made
durable on other shards. We believe that solving these challenges and ap-
plying the ideas behind Cap for transactional storage systems could offer
performance benefits.

7.3.4 Caching on Cap and Orca

One or more layers of cache in between the client and the storage system
store data items so that future accesses can be faster and the overall load
on the storage system can be reduced. However, caching often interacts
with the consistency guarantees of the storage system. For example, con-
sider that a replicated storage system provides the strongest guarantee
(i.e., linearizability) and thus prevents stale reads. However, if a client
reads data that is cached elsewhere, the client may notice stale data. As a
result, the system can also expose out-of-order reads to clients. Similarly,
even if the storage system provides cross-client monotonicity, caches can
expose out-of-order states to clients.

Write caching also presents an interesting challenge for Cap. When a
non-durable data item is cached, a read served by the cache cannot guar-
antee the durability of data in the storage system. However, such write
caching is often not used in practice; for example, at Facebook [116] data
is cached only on reads and not on writes; applications issue writes to the
storage system directly and later invalidate the cache. Since data items are
cached only on reads, guarantees of Cap can be ensured. However, if data
is cached during writes, then one must co-design the caching layer and
storage system; the cache has to interact with the storage system to learn
if a data item is durable and only serve data items that are durable upon
reads. Other reads can be treated as a cache miss and redirected to the
storage system. We leave this co-design and the analysis of the interaction

between caching and consistency as avenues for future work.



168

7.3.5 Active sets and Linearizability

In Chapter 5, we introduced the technique of active sets. Active sets use a
lease-based mechanism to provide cross-client monotonicity while allow-
ing reads at multiple nodes. However, the idea behind active sets is not
limited to Orca and can be implemented on systems that provide other
guarantees such as linearizability. To ensure linearizability while serv-
ing reads from many nodes, the idea of active sets can be employed as
follows. On a write, the request must be committed on all the nodes in
the active set; reads should be served by only by the nodes in the active
set. We leave this application of the active sets technique to linearizable

systems as another avenue for future work.

7.4 Closing Words

Distributed storage systems are at the heart of applications running in to-
day’s modern data centers. They are responsible for storing and manag-
ing all the valuable data that we generate. It is critical that these systems
keep user data safe. This dissertation takes initial but important steps
towards examining and improving the guarantees provided by existing
systems in two ways.

First, we examined if and how storage faults affect durability in mod-
ern distributed storage systems after the system has stored redundant
copies of data. Our analysis of eight popular systems revealed that the
seemingly obvious things that we take for granted in distributed systems
such as redundancy would provide fault tolerance is not the reality in
these systems. In most cases, these systems do not handle problems that
arise at the storage layer. The storage layer offers a great abstraction, hid-
ing complex details from applications (including distributed storage sys-
tems). However, for an application to be truly reliable, it must be aware

of the problems that can arise at the layers below and handle them ap-



169

propriately. This line of thought also resonates with the classical end-to-
end arguments in system design; although lower layers may implement
some reliability mechanismes, it is the ultimate responsibility of higher-
level software to ensure end-to-end reliability. However, the behavior of
existing systems that we studied in this dissertation is in contrast with the
end-to-end principles.

While finding and fixing problems in existing systems is one way to
improving durability in existing systems, some systems provide weaker
guarantees by design. For example, many current systems employ even-
tual durability and thus can arbitrarily lose data and enable only weaker
consistency guarantees. In this dissertation, we also presented solutions
to improve the guarantees of these systems without losing performance.
A key to providing high performance and strong guarantees is to pay
attention to what is observable to clients. Specifically, although the dura-
bility layer may lose some recent updates, it may not be acceptable to lose
data that has been externalized to clients that have already read them.
Based on this insight, Cap delays synchronous operations until the point
the data is externalized to clients, thereby hiding the cost required to pro-
vide strong guarantees.

We believe the ideas presented in this dissertation can apply to sys-
tems that run in today’s data centers. At the same time, we also believe
that some of these ideas can prove useful with upcoming hardware and
deployment trends. First, with storage devices packing more bits, their
error rates are expected to rise. For instance, next-generation QLC de-
vices are already known to have more errors if writes are frequent [32].
Thus, the problems that we found in the first part of this dissertation will
be more prevalent and important in systems that use such devices. Sec-
ond, edge and Iol' platforms are rapidly changing the way servers are
deployed; instead of hosting all compute and storage resources in a cen-

tralized data center, these resources are now closer to end-users and ap-



170

plications. The performance and durability tradeoffs we studied in the
second part of this dissertation become even more important in storage
systems that span such edge and cloud servers. We believe the durability
and consistency model proposed in this thesis can prove useful in such
settings.



171

Bibliography

Cords Tool and Results. http://research.cs.wisc.edu/adsl/

Software/cords/

CVE-2013-2293. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2013-2293.

CVE-2013-3220. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2013-3220.

LevelDB corrupted compressed block contents errors. https://
github.com/bitcoin/bitcoin/issues/12690.

Leveldb/Table: Corruption on Data-block. https://github.com/

ethereum/go-ethereum/issues/2568.

Abadi, Daniel and Freels, Matt.  Serializability vs Strict Se-
rializability: =~ The Dirty Secret of Database Isolation Lev-
els. https://fauna.com/blog/serializability-vs-strict-
serializability-the-dirty-secret-of-database-isolation-

levels.

Marcos K. Aguilera and D. Terry. The Many Faces of Consistency.
IEEE Data Eng. Bull., 39:3-13, 2016.


http://research.cs.wisc.edu/adsl/Software/cords/
http://research.cs.wisc.edu/adsl/Software/cords/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2293
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2293
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3220
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3220
https://github.com/bitcoin/bitcoin/issues/12690
https://github.com/bitcoin/bitcoin/issues/12690
https://github.com/ethereum/go-ethereum/issues/2568
https://github.com/ethereum/go-ethereum/issues/2568
https://fauna.com/blog/serializability-vs-strict-serializability-the-dirty-secret-of-database-isolation-levels
https://fauna.com/blog/serializability-vs-strict-serializability-the-dirty-secret-of-database-isolation-levels
https://fauna.com/blog/serializability-vs-strict-serializability-the-dirty-secret-of-database-isolation-levels

[12]

172

Ramnatthan Alagappan. Protocol-and Situation-aware Distributed
Storage Systems. The University of Wisconsin-Madison, 2019.

Ramnatthan  Alagappan, Vijay Chidambaram, Thanu-
malayan Sankaranarayana Pillai, Aws Albarghouthi, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Beyond Storage
APIs: Provable Semantics for Storage Stacks. In Proceedings of
the 15th USENIX Conference on Hot Topics in Operating Systems
(HOTOS’15), Kartause Ittingen, Switzerland, May 2015.

Ramnatthan Alagappan, Aishwarya Ganesan, Eric Lee, Aws Al-
barghouthi, Vijay Chidambaram, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Protocol-Aware Recovery for
Consensus-Based Storage. In Proceedings of the 16th USENIX Confer-
ence on File and Storage Technologies (FAST "18), Oakland, CA, Febru-
ary 2018.

Ramnatthan Alagappan, Aishwarya Ganesan, Jing Liu, Andrea
Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Fault-Tolerance, Fast
and Slow: Exploiting Failure Asynchrony in Distributed Systems.
In Proceedings of the 13th USENIX Conference on Operating Systems
Design and Implementation (OSDI '18), Carlsbad, CA, October 2018.

Ramnatthan Alagappan, Aishwarya Ganesan, Yuvraj Patel, Thanu-
malayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Correlated Crash Vulnerabilities. In
Proceedings of the 12th USENIX Conference on Operating Systems De-
sign and Implementation (OSDI "16), Savannah, GA, November 2016.

Apache. Cassandra. http://cassandra.apache.org/.

Apache. Hadoop Distributed File System (HDEFS). https://
hadoop.apache.org/docs/r1.2.1/hdfs_design.html.


http://cassandra.apache.org/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

[18]

[19]

173

Apache. Kakfa. http://kafka.apache.org/.
Apache. ZooKeeper. https://zookeeper.apache.org/.

Apache. ZooKeeper Configuration Parameters. https:
//zookeeper.apache.org/doc/r3.1.2/zookeeperAdmin.html#

sc_configuration.

Apache. ZooKeeper  Guarantees, Properties,
and Definitions. https://zookeeper.apache.
org/doc/r3.2.2/zookeeperInternals.html#sc_

guaranteesPropertiesDefinitions.

Apache. ZooKeeper Leader Activation. https://zookeeper.
apache.org/doc/r3.2.2/zookeeperInternals.html#sc_

leaderElection.

Apache. ZooKeeper Overview. https://zookeeper.apache.org/
doc/r3.5.1-alpha/zookeeperOver.html.

Apache ZooKeeper. ZooKeeper Programmer’s Guide - ZooKeeper
Stat Structure. https://zookeeper.apache.org/doc/r3.1.2/

zookeeperProgrammers.html#sc_zkStatStructure.

Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operat-
ing Systems: Three Easy Pieces. Arpaci-Dusseau Books, 1.0 edition,
May 2015.

Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. Bolt-
on Causal Consistency. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’13), New
York, NY, June 2013.

Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau,

Remzi H. Arpaci-Dusseau, Garth R. Goodson, and Bianca


http://kafka.apache.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/doc/r3.1.2/zookeeperAdmin.html#sc_configuration
https://zookeeper.apache.org/doc/r3.1.2/zookeeperAdmin.html#sc_configuration
https://zookeeper.apache.org/doc/r3.1.2/zookeeperAdmin.html#sc_configuration
https://zookeeper.apache.org/doc/r3.2.2/zookeeperInternals.html#sc_guaranteesPropertiesDefinitions
https://zookeeper.apache.org/doc/r3.2.2/zookeeperInternals.html#sc_guaranteesPropertiesDefinitions
https://zookeeper.apache.org/doc/r3.2.2/zookeeperInternals.html#sc_guaranteesPropertiesDefinitions
https://zookeeper.apache.org/doc/r3.2.2/zookeeperInternals.html#sc_leaderElection
https://zookeeper.apache.org/doc/r3.2.2/zookeeperInternals.html#sc_leaderElection
https://zookeeper.apache.org/doc/r3.2.2/zookeeperInternals.html#sc_leaderElection
https://zookeeper.apache.org/doc/r3.5.1-alpha/zookeeperOver.html
https://zookeeper.apache.org/doc/r3.5.1-alpha/zookeeperOver.html
https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html#sc_zkStatStructure
https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html#sc_zkStatStructure

[25]

174

Schroeder. An Analysis of Data Corruption in the Storage Stack.
In Proceedings of the 6th USENIX Symposium on File and Storage
Technologies (FAST '08), San Jose, CA, February 2008.

Lakshmi N. Bairavasundaram, Garth R. Goodson, Shankar Pasupa-
thy, and Jiri Schindler. An Analysis of Latent Sector Errors in Disk
Drives. In Proceedings of the 2007 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS '07),
San Diego, CA, June 2007.

Lakshmi N. Bairavasundaram, Meenali Rungta, Nitin Agrawal,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and
Michael M. Swift. Analyzing the Effects of Disk-Pointer Corrup-
tion. In Proceedings of the International Conference on Dependable Sys-
tems and Networks (DSN “08), Anchorage, Alaska, June 2008.

Radu Banabic and George Candea. Fast Black-box Testing of System
Recovery Code. In Proceedings of the EuroSys Conference (EuroSys
"12), Bern, Switzerland, April 2012.

J.H. Barton, EW. Czeck, Z.Z. Segall, and D.P. Siewiorek. Fault In-
jection Experiments Using FIAT. IEEE Transactions on Computers,
39(4), April 1990.

William J. Bolosky, Dexter Bradshaw, Randolph B. Haagens, Noz-
bert P. Kusters, and Peng Li. Paxos Replicated State Machines As
the Basis of a High-performance Data Store. In Proceedings of the 8th
Symposium on Networked Systems Design and Implementation (NSDI
'11), Boston, MA, April 2011.

Eric Brewer, Lawrence Ying, Lawrence Greenfield, Robert Cypher,
and Theodore T’so. Disks for Data Centers. Technical report,
Google, 2016.



[32]

[37]

175

Randal C Burns, Robert M Rees, and Darrell DE Long. An Ana-
lytical Study of Opportunistic Lease Renewal. In International Con-
ference on Distributed Computing Systems (ICDCS ’01), Phoenix, AZ,
April 2001.

Yu Cai, Erich F Haratsch, Onur Mutlu, and Ken Mai. Error Pat-
terns in MLC NAND Flash Memory: Measurement, Characteriza-
tion, and Analysis. In 2012 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), pages 521-526. IEEE, 2012.

Michael Calore. Ma.gnolia Suffers Major Data Loss, Site Taken Of-
fline. https://www.wired.com/2009/01/magnolia-suffer/.

Miguel Castro and Barbara Liskov. Practical Byzantine Fault Toler-
ance. In Proceedings of the 3rd Symposium on Operating Systems Design
and Implementation (OSDI '99), New Orleans, Louisiana, February
1999.

Ceph. Ceph File System. https://ceph.io/.

Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay
Ileri, Adam Chlipala, M Frans Kaashoek, and Nickolai Zeldovich.
Verifying a High-performance Crash-safe File System Using a Tree
Specification. In Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP "17), Shanghai, China, October 2017.

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M Frans
Kaashoek, and Nickolai Zeldovich. Using Crash Hoare Logic for
Certifying the FSCQ File System. In Proceedings of the 25th ACM
Symposium on Operating Systems Principles (SOSP '15), Monterey,
California, October 2015.

Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, An-

drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Optimistic


https://www.wired.com/2009/01/magnolia-suffer/
https://ceph.io/

[39]

[43]

[44]

176

Crash Consistency. In Proceedings of the 24th ACM Symposium on
Operating Systems Principles (SOSP "13), Farmington, PA, November
2013.

Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Daw-
son Engler. An Empirical Study of Operating System Errors. In Pro-
ceedings of the 18th ACM Symposium on Operating Systems Principles
(SOSP '01), Banff, Canada, October 2001.

James Cipar, Greg Ganger, Kimberly Keeton, Charles B Morrey III,
Craig AN Soules, and Alistair Veitch. LazyBase: Trading Freshness
for Performance in a Scalable Database. In Proceedings of the EuroSys
Conference (EuroSys '12), Bern, Switzerland, April 2012.

CockroachDB. CockroachDB. https://www.cockroachlabs.com/.

CockroachDB.  Disk corruptions and read/write error han-
dling in CockroachDB. https://forum.cockroachlabs.com/
t/disk-corruptions-and-read-write-error-handling-in-
cockroachdb/258.

CockroachDB. Resiliency to disk corruption and storage errors.
https://github.com/cockroachdb/cockroach/issues/7882.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrish-
nan, and Russell Sears. Benchmarking Cloud Serving Systems with
YCSB. In Proceedings of the ACM Symposium on Cloud Computing
(SOCC "10), Indianapolis, IA, June 2010.

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes,
Christopher Frost, J] Furman, Sanjay Ghemawat, Andrey Gubareyv,
Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian
Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-
nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lind-


https://www.cockroachlabs.com/
https://forum.cockroachlabs.com/t/disk-corruptions-and-read-write-error-handling-in-cockroachdb/258
https://forum.cockroachlabs.com/t/disk-corruptions-and-read-write-error-handling-in-cockroachdb/258
https://forum.cockroachlabs.com/t/disk-corruptions-and-read-write-error-handling-in-cockroachdb/258
https://github.com/cockroachdb/cockroach/issues/7882

177

say Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. Spanner: Google’s Globally-
Distributed Database. In Proceedings of the 10th Symposium on Oper-
ating Systems Design and Implementation (OSDI "12), pages 261-264,
Hollywood, CA, October 2012.

Data Center Knowledge.  Ma.gnolia data is gone for good.
http://www.datacenterknowledge.com/archives/2009/02/19/

magnolia-data-is-gone-for-good/.

Datastax. Netflix Cassandra Use Case. http://www.datastax.com/

resources/casestudies/netflix.

DataStax. Read Repair:  Repair during Read Path.
http://docs.datastax.com/en/cassandra/3.0/cassandra/

operations/opsRepairNodesReadRepair.html.

S. Dawson, F. Jahanian, and T. Mitton. ORCHESTRA: A Probing
and Fault Injection Environment for Testing Protocol Implementa-
tions. In Proceedings of the 2nd International Computer Performance and
Dependability Symposium (IPDS "96), 1996.

Jeff Dean.  Building Large-Scale Internet Services.  http:
//static.googleusercontent.com/media/research.google.
com/en//people/jeff/S0CC2010-keynote-slides.pdf.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavard-
han Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan
Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo:
Amazon’s Highly Available Key-value Store. In Proceedings of the
21st ACM Symposium on Operating Systems Principles (SOSP '07),
Stevenson, WA, October 2007.


http://www.datacenterknowledge.com/archives/2009/02/19/magnolia-data-is-gone-for-good/
http://www.datacenterknowledge.com/archives/2009/02/19/magnolia-data-is-gone-for-good/
http://www.datastax.com/resources/casestudies/netflix
http://www.datastax.com/resources/casestudies/netflix
http://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsRepairNodesReadRepair.html
http://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsRepairNodesReadRepair.html
http://static.googleusercontent.com/media/research.google.com/en//people/jeff/SOCC2010-keynote-slides.pdf
http://static.googleusercontent.com/media/research.google.com/en//people/jeff/SOCC2010-keynote-slides.pdf
http://static.googleusercontent.com/media/research.google.com/en//people/jeff/SOCC2010-keynote-slides.pdf

[52]

178

Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson,
Scott Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry.
Epidemic Algorithms for Replicated Database Maintenance. In Pro-
ceedings of the 26th ACM Symposium on Principles of Distributed Com-
puting, Vancouver, British Columbia, Canada, August 1987.

etcd. etcd. https://coreos.com/etcd.

David Fiala, Frank Mueller, Christian Engelmann, Rolf Riesen, Kurt
Ferreira, and Ron Brightwell. Detection and Correction of Silent
Data Corruption for Large-scale High-performance Computing. In
Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis (SC '12), Salt Lake City,
Utah, 2012.

Flavio Junqueira. Transaction Logs and Snapshots. https://mail-
archives.apache.org/mod_mbox/zookeeper-user/201504.mbox/
%3CDA045626-54A4-4F8A-96C0-69DA574D9807@yahoo . com%3E.

Daniel Fryer, Dai Qin, Jack Sun, Kah Wai Lee, Angela Demke
Brown, and Ashvin Goel. Checking the Integrity of Transactional
Mechanisms. In Proceedings of the 12th USENIX Symposium on File
and Storage Technologies (FAST '14), Santa Clara, CA, February 2014.

Daniel Fryer, Kuei Sun, Rahat Mahmood, TingHao Cheng, Shaun
Benjamin, Ashvin Goel, and Angela Demke Brown. Recon: Verify-
ing File System Consistency at Runtime. In Proceedings of the 10th
USENIX Symposium on File and Storage Technologies (FAST "12), San
Jose, CA, February 2012.

FUSE. Linux FUSE (Filesystem in Userspace) interface. https://
github.com/1libfuse/libfuse.


https://coreos.com/etcd
https://mail-archives.apache.org/mod_mbox/zookeeper-user/201504.mbox/%3CDA045626-54A4-4F8A-96C0-69DA574D9807@yahoo.com%3E
https://mail-archives.apache.org/mod_mbox/zookeeper-user/201504.mbox/%3CDA045626-54A4-4F8A-96C0-69DA574D9807@yahoo.com%3E
https://mail-archives.apache.org/mod_mbox/zookeeper-user/201504.mbox/%3CDA045626-54A4-4F8A-96C0-69DA574D9807@yahoo.com%3E
https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse

[59]

[62]

179

Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Redundancy Does Not
Imply Fault Tolerance: Analysis of Distributed Storage Reactions to
Single Errors and Corruptions. In Proceedings of the 15th USENIX
Conference on File and Storage Technologies (FAST '17), Santa Clara,
CA, February 2017.

Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Strong and Efficient Con-
sistency with Consistency-aware Durability. In Proceedings of the
18th USENIX Conference on File and Storage Technologies (FAST '20),
Santa Clara, CA, February 2020.

Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar,
Mendel Rosenblum, and Amin Vahdat. Exploiting a Natural Net-
work Effect for Scalable, Fine-grained Clock Synchronization. In
Proceedings of the 15th Symposium on Networked Systems Design and
Implementation (NSDI "18), Renton, WA, April 2018.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The
Google File System. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP '03), Bolton Landing, New York,
October 2003.

Cary G. Gray and David Cheriton. Leases: An Efficient Fault-
tolerant Mechanism for Distributed File Cache Consistency. In Pro-
ceedings of the 12th ACM Symposium on Operating Systems Principles
(SOSP '89), Litchfield Park, Arizona, December 1989.

Weining Gu, Z. Kalbarczyk, Ravishankar K. Iyer, and Zhenyu Yang.
Characterization of Linux Kernel Behavior Under Errors. In Pro-
ceedings of the International Conference on Dependable Systems and Net-
works (DSN '03), San Francisco, CA, June 2003.



[65]

[70]

[71]

180

Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi.
Incremental Consistency Guarantees for Replicated Objects. In Pro-
ceedings of the 12th USENIX Conference on Operating Systems Design
and Implementation (OSDI "16), Savannah, GA, November 2016.

Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa,
Tiratat Patana-anake, Thanh Do, Jeffry Adityatama, Kurnia J. Eli-
azar, Agung Laksono, Jeffrey F. Lukman, Vincentius Martin, and
Anang D. Satria. What Bugs Live in the Cloud? A Study of 3000+
Issues in Cloud Systems. In Proceedings of the ACM Symposium on
Cloud Computing (SOCC "14), Seattle, WA, November 2014.

Huayang Guo, Ming Wu, Lidong Zhou, Gang Hu, Junfeng Yang,
and Lintao Zhang. Practical Software Model Checking via Dynamic
Interface Reduction. In Proceedings of the 23rd ACM Symposium on
Operating Systems Principles (SOSP "11), Cascais, Portugal, October
2011.

James R Hamilton et al. On Designing and Deploying Internet-Scale
Services. In Proceedings of the 21st Annual Large Installation System
Administration Conference (LISA '07), Dallas, Texas, November 2007.

Seungjae Han, Kang G Shin, and Harold A Rosenberg. DOCTOR:
An Integrated Software Fault Injection Environment for Distributed
Real-time Systems. In Proceedings of the International Computer Per-
formance and Dependability Symposium (IPDS "95), 1995.

Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A Cor-
rectness Condition for Concurrent Objects. ACM Trans. Program.
Lang. Syst., 12(3), July 1990.

Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin

Reed. ZooKeeper: Wait-free Coordination for Internet-scale Sys-



181

tems. In Proceedings of the USENIX Annual Technical Conference
(USENIX "10), Boston, MA, June 2010.

Henrik Ingo and Aishwarya Ganesan. Discussion with Hen-
rik Ingo. https://www.openlife.cc/comment/662091#comment-
662091.

James Myers. Data Integrity in Solid State Drives. http://intel.
1y/2cFOdTT.

Jay Kreps. Using forceSync=no in Zookeeper. https://twitter.
com/jaykreps/status/363720100332843008.

Jerome Verstrynge. Timestamps in Cassandra. http://docs.
oracle.com/cd/B12037_01/server.101/b10726/apphard.htm.

Jonathan Corbet. O_*SYNC. https://lwn.net/Articles/350219/.

Flavio P Junqueira, Benjamin C Reed, and Marco Serafini. Zab:
High-Performance Broadcast for Primary-Backup Systems. In Pro-
ceedings of the International Conference on Dependable Systems and Net-
works (DSN "11), Hong Kong, China, June 2011.

Kafka. Data corruption or EIO leads to data loss. https://issues.
apache.org/jira/browse/KAFKA-4009.

Manos Kapritsos, Yang Wang, Vivien Quema, Allen Clement,
Lorenzo Alvisi, and Mike Dahlin. All About Eve: Execute-verify
Replication for Multi-core Servers. In Proceedings of the 10th Sym-
posium on Operating Systems Design and Implementation (OSDI "12),
Hollywood, CA, October 2012.

Karthik Ranganathan. Low Latency Reads in Geo-Distributed
SQL with Raft Leader Leases. https://blog.yugabyte.com/low-


https://www.openlife.cc/comment/662091#comment-662091
https://www.openlife.cc/comment/662091#comment-662091
http://intel.ly/2cF0dTT
http://intel.ly/2cF0dTT
https://twitter.com/jaykreps/status/363720100332843008
https://twitter.com/jaykreps/status/363720100332843008
http://docs.oracle.com/cd/B12037_01/server.101/b10726/apphard.htm
http://docs.oracle.com/cd/B12037_01/server.101/b10726/apphard.htm
https://lwn.net/Articles/350219/
https://issues.apache.org/jira/browse/KAFKA-4009
https://issues.apache.org/jira/browse/KAFKA-4009
https://blog.yugabyte.com/low-latency-reads-in-geo-distributed-sql-with-raft-leader-leases/
https://blog.yugabyte.com/low-latency-reads-in-geo-distributed-sql-with-raft-leader-leases/

[82]

182

latency-reads-in-geo-distributed-sql-with-raft-leader-

leases/.

Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement,
and Edmund Wong. Zyzzyva: Speculative Byzantine Fault Toler-
ance. In ACM SIGOPS Operating Systems Review, volume 41, pages
45-58. ACM, 2007.

John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski,
Patrick Eaton, Dennis Geels, Ramakrisha Gummadi, Sean Rhea,
Hakim Weatherspoon, Westley Weimer, Chris Wells, and Ben Zhao.
OceanStore: An Architecture for Global-scale Persistent Storage. In
Proceedings of the 9th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS 2000),
Cambridge, MA, November 2000.

Kyle Kingsbury. Jepsen. http://jepsen.io/.

Leslie Lamport. How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs. IEEE Transactions on
Computers C-28, 9:690-691, September 1979.

Leslie Lamport. Paxos Made Simple. ACM Sigact News, 32(4):18-25,
2001.

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
Generals Problem. ACM Transactions on Programming Languages and
Systems (TOPLAS), 4(3):382-401, 1982.

Collin Lee, Seo Jin Park, Ankita Kejriwal, Satoshi Matsushita, and
John Ousterhout. Implementing Linearizability at Large Scale and
Low Latency. In Proceedings of the 25th ACM Symposium on Operating
Systems Principles (SOSP "15), Monterey, California, October 2015.


https://blog.yugabyte.com/low-latency-reads-in-geo-distributed-sql-with-raft-leader-leases/
https://blog.yugabyte.com/low-latency-reads-in-geo-distributed-sql-with-raft-leader-leases/
https://blog.yugabyte.com/low-latency-reads-in-geo-distributed-sql-with-raft-leader-leases/
http://jepsen.io/

[88]

183

Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jef-
frey F. Lukman, and Haryadi S. Gunawi. SAMC: Semantic-aware
Model Checking for Fast Discovery of Deep Bugs in Cloud Systems.
In Proceedings of the 11th Symposium on Operating Systems Design and
Implementation (OSDI "14), Broomfield, CO, October 2014.

Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and
Dan R. K. Ports. Just Say No to Paxos Overhead: Replacing Consen-
sus with Network Ordering. In Proceedings of the 12th USENIX Con-
ference on Operating Systems Design and Implementation (OSDI '16),
Savannah, GA, November 2016.

Barbara Liskov and James Cowling. Viewstamped Replication Re-
visited. Technical Report MIT-CSAIL-TR-2012-021, MIT CSAIL,
2012.

Wyatt Lloyd, Michael ] Freedman, Michael Kaminsky, and David G
Andersen. Don't Settle for Eventual: Scalable Causal Consistency
for Wide-Area Storage with COPS. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (SOSP "11), Cascais, Por-
tugal, October 2011.

LogCabin. LogCabin. https://github.com/logcabin/logcabin.

LogCabin. Reaction to disk errors and corruptions. https://

groups.google.com/forum/#!topic/logcabin-dev/wqNcdjOIHe4.

Haonan Lu, Kaushik Veeraraghavan, Philippe Ajoux, Jim Hunt,
Yee Jiun Song, Wendy Tobagus, Sanjeev Kumar, and Wyatt Lloyd.
Existential Consistency: Measuring and Understanding Consis-
tency at Facebook. In Proceedings of the 25th ACM Symposium on
Operating Systems Principles (SOSP "15), Monterey, California, Octo-
ber 2015.


https://github.com/logcabin/logcabin
https://groups.google.com/forum/#!topic/logcabin-dev/wqNcdj0IHe4
https://groups.google.com/forum/#!topic/logcabin-dev/wqNcdj0IHe4

[99]

184

Mark Adler. Adler32 Collisions. http://stackoverflow.com/
questions/13455067/horrific-collisions-of-adler32-hash.

Syed Akbar Mehdi, Cody Littley, Natacha Crooks, Lorenzo Alvisi,
Nathan Bronson, and Wyatt Lloyd. I Can’t Believe It’s Not Causal!
Scalable Causal Consistency with No Slowdown Cascades. In Pro-
ceedings of the 14th Symposium on Networked Systems Design and Im-
plementation (NSDI "17), Boston, MA, March 2017.

Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu. A Large-
Scale Study of Flash Memory Failures in the Field. In Proceedings of
the 2015 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS "15), Portland, Ore-
gon, June 2015.

Ningfang Mi, A. Riska, E. Smirni, and E. Riedel. Enhancing Data
Availability in Disk Drives through Background Activities. In Pro-
ceedings of the International Conference on Dependable Systems and Net-
works (DSN '08), Anchorage, Alaska, June 2008.

Michael Rubin. Google moves from ext2 to ext4. http://lists.
openwall .net/linux-ext4/2010/01/04/8.

[100] James Mickens, Edmund B. Nightingale, Jeremy Elson, Krishna

Nareddy, Darren Gehring, Bin Fan, Asim Kadav, Vijay Chi-
dambaram, and Osama Khan. Blizzard: Fast, Cloud-scale Block
Storage for Cloud-oblivious Applications. In Proceedings of the 11th
Symposium on Networked Systems Design and Implementation (NSDI
"14), Seattle, WA, April 2014.

[101] MongoDB. MongoDB. https://wuw.mongodb.org/.

[102] MongoDB.  MongoDB at eBay. https://www.mongodb.com/

presentations/mongodb-ebay.


http://stackoverflow.com/questions/13455067/horrific-collisions-of-adler32-hash
http://stackoverflow.com/questions/13455067/horrific-collisions-of-adler32-hash
http://lists.openwall.net/linux-ext4/2010/01/04/8
http://lists.openwall.net/linux-ext4/2010/01/04/8
https://www.mongodb.org/
https://www.mongodb.com/presentations/mongodb-ebay
https://www.mongodb.com/presentations/mongodb-ebay

185

[103] MongoDB. MongoDB Read Preference. https://docs.mongodb.

com/manual/core/read-preference/.

[104] MongoDB. MongoDB Replication. https://docs.mongodb.org/

manual/replication/.

[105] MongoDB. MongoDB WiredTiger. https://docs.mongodb.org/

manual/core/wiredtiger/
[106] MongoDB. MongoDB YouGov. http://bit.1ly/2GgGyeX.

[107] MongoDB. Non-Blocking Secondary Reads. https:
/ /www.mongodb. com/blog/post/mongodb-40-nonblocking-

secondary-reads

[108] MongoDB. Read Concern Linearizable. https://docs.mongodb.

com/manual/reference/read-concern-linearizable/.

[109] Iulian Moraru, David G. Andersen, and Michael Kaminsky. There
is More Consensus in Egalitarian Parliaments. In Proceedings of the
24th ACM Symposium on Operating Systems Principles (SOSP "13),
Nemacolin Woodlands Resort, Farmington, Pennsylvania, October
2013.

[110] Seyed Hossein Mortazavi, Bharath Balasubramanian, Eyal de Lara,
and Shankaranarayanan Puzhavakath Narayanan. Toward Session
Consistency for the Edge. In USENIX Workshop on Hot Topics in Edge
Computing (HotEdge 18), Boston, MA, July 2018.

[111] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
Technical report, Manubot, 2019.

[112] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash Sharma,
Laura Caulfield, Anand Sivasubramaniam, Ben Cutler, Jie Liu,


https://docs.mongodb.com/manual/core/read-preference/
https://docs.mongodb.com/manual/core/read-preference/
https://docs.mongodb.org/manual/replication/
https://docs.mongodb.org/manual/replication/
https://docs.mongodb.org/manual/core/wiredtiger/
https://docs.mongodb.org/manual/core/wiredtiger/
http://bit.ly/2GgGyeX
https://www.mongodb.com/blog/post/mongodb-40-nonblocking-secondary-reads
https://www.mongodb.com/blog/post/mongodb-40-nonblocking-secondary-reads
https://www.mongodb.com/blog/post/mongodb-40-nonblocking-secondary-reads
https://docs.mongodb.com/manual/reference/read-concern-linearizable/
https://docs.mongodb.com/manual/reference/read-concern-linearizable/

[113]

[114]

[115]

[116]

[117]

186

Badriddine Khessib, and Kushagra Vaid. SSD Failures in Data-
centers: What? When? And Why? In Proceedings of the 9th ACM
International on Systems and Storage Conference (SYSTOR 16), Haifa,
Israel, June 2016.

Netflix. Cassandra at Netflix. http://techblog.netflix.com/
2011/11/benchmarking-cassandra-scalability-on.html.

Edmund B Nightingale, Peter M Chen, and Jason Flinn. Specula-
tive Execution in a Distributed File System. In Proceedings of the
20th ACM Symposium on Operating Systems Principles (SOSP '05),
Brighton, UK, October 2005.

Edmund B Nightingale, Kaushik Veeraraghavan, Peter M Chen,
and Jason Flinn. Rethink the sync. In Proceedings of the 7th Sym-
posium on Operating Systems Design and Implementation (OSDI "06),
Seattle, WA, November 2006.

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski,
Herman Lee, Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel
Peek, Paul Saab, David Stafford, Tony Tung, and Venkateshwaran
Venkataramani. Scaling Memcache at Facebook. In Proceedings of the
10th USENIX Conference on Networked Systems Design and Implemen-
tation, nsdi’13, pages 385-398, Berkeley, CA, USA, 2013. USENIX
Association.

Brian M Oki and Barbara H Liskov. Viewstamped Replication:
A New Primary Copy Method to Support Highly-Available Dis-
tributed Systems. In Proceedings of the Seventh Annual ACM Sym-
posium on Principles of Distributed Computing, ON, Canada, August
1988.


http://techblog.netflix.com/2011/11/benchmarking-cassandra-scalability-on.html
http://techblog.netflix.com/2011/11/benchmarking-cassandra-scalability-on.html

187

[118] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth
O'Neil. The Log-Structured Merge-Tree (LSM-Tree). Acta Informat-
ica, 33(4), 1996.

[119] Diego Ongaro. Consensus: Bridging Theory and Practice. PhD thesis,
Stanford University, 2014.

[120] Diego Ongaro and John Ousterhout. In Search of an Understand-
able Consensus Algorithm. In 2014 USENIX Annual Technical Con-
ference (USENIX ATC 14), Philadelphia, PA, June 2014.

[121] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ouster-
hout, and Mendel Rosenblum. Fast Crash Recovery in RAMCloud.
In Proceedings of the 23rd ACM Symposium on Operating Systems Prin-
ciples (SOSP '11), Cascais, Portugal, October 2011.

[122] Oracle. Fusion-IO Data Integrity. https://blogs.oracle.com/

linux/entry/fusion_io_showcases_data_integrity.

[123] Oracle. Preventing Data Corruptions with HARD. http://docs.
oracle.com/cd/B12037_01/server.101/b10726/apphard.htm.

[124] Bernd Panzer-Steindel. Data Integrity. CERN/IT, 2007.

[125] Parsely Inc. Streamparse: Configuring Zookeeper with forceSync
=no. https://github.com/Parsely/streamparse/issues/168.

[126] David Patterson, Aaron Brown, Pete Broadwell, George Candea,
Mike Chen, James Cutler, Patricia Enriquez, Armando Fox, Emre
Kiciman, Matthew Merzbacher, et al. Recovery Oriented Comput-
ing (ROC): Motivation, Definition, Techniques, and Case Studies.
Technical Report UCB//CSD-02-1175, UC Berkeley Computer Sci-
ence, 2002.


https://blogs.oracle.com/linux/entry/fusion_io_showcases_data_integrity
https://blogs.oracle.com/linux/entry/fusion_io_showcases_data_integrity
http://docs.oracle.com/cd/B12037_01/server.101/b10726/apphard.htm
http://docs.oracle.com/cd/B12037_01/server.101/b10726/apphard.htm
https://github.com/Parsely/streamparse/issues/168

[127]

[128]

[129]

[130]

[131]

[132]

188

Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-
natthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. All File Systems Are Not
Created Equal: On the Complexity of Crafting Crash-consistent
Applications. In Proceedings of the 11th Symposium on Operating Sys-
tems Design and Implementation (OSDI "14), Broomfield, CO, October
2014.

Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr Sharma, and
Arvind Krishnamurthy. Designing Distributed Systems Using Ap-
proximate Synchrony in Data Center Networks. In Proceedings of
the 12th Symposium on Networked Systems Design and Implementation
(NSDI '15), Oakland, CA, March 2015.

Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Model-Based Failure Analysis of Journaling File
Systems. In The Proceedings of the International Conference on Depend-
able Systems and Networks (DSN-2005), Yokohama, Japan, June 2005.

Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin
Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. IRON File Systems. In Proceedings of the
20th ACM Symposium on Operating Systems Principles (SOSP '05),
Brighton, UK, October 2005.

Rahul Bhartia. MongoDB on AWS Guidelines and Best Practices.
http://media.amazonwebservices.com/AWS_NoSQL_MongoDB. pdf.

David Ratner, Peter Reiher, Gerald ] Popek, and Geoffrey H Kuen-
ning. Replication Requirements in Mobile Environments. Mobile
Networks and Applications, 6(6):525-533, 2001.


http://media.amazonwebservices.com/AWS_NoSQL_MongoDB.pdf

189

[133] Redis.  Instagram Architecture. http://highscalability.
com/blog/2012/4/9/the-instagram-architecture-facebook-
bought-for-a-cool-billio.html.

[134] Redis. Redis. http://redis.io/.

[135] Redis. Redis at Flickr. http://code.flickr.net/2014/07/31/

redis-sentinel-at-flickr/.
[136] Redis. Redis Persistence. https://redis.io/topics/persistence.
[137] Redis. Redis Replication. http://redis.io/topics/replication.

[138] Redis. Redis Sentinel Documentation. https://redis.io/topics/

sentinel.
[139] Redis. Redis WAIT. https://redis.io/commands/wait.

[140] Redis. Scaling Reads. https://redislabs.com/ebook/part-3-
next-steps/chapter-10-scaling-redis/10-1-scaling-reads/.

[141] Redis. Silent data corruption in Redis. https://github.com/

antirez/redis/issues/3730.

[142] RethinkDB. Integrity of read results. https://github.com/
rethinkdb/rethinkdb/issues/5925.

[143] RethinkDB. RethinkDB. https://www.rethinkdb.com/.

[144] RethinkDB. RethinkDB Data Storage. https://www.rethinkdb.

com/docs/architecture/#data-storage.

[145] RethinkDB.  RethinkDB Doc Issues.  https://github.com/
rethinkdb/docs/issues/1167.

[146] RethinkDB. RethinkDB Faq. https://www.rethinkdb.com/faq/.


http://highscalability.com/blog/2012/4/9/the-instagram-architecture-facebook-bought-for-a-cool-billio.html
http://highscalability.com/blog/2012/4/9/the-instagram-architecture-facebook-bought-for-a-cool-billio.html
http://highscalability.com/blog/2012/4/9/the-instagram-architecture-facebook-bought-for-a-cool-billio.html
http://redis.io/
http://code.flickr.net/2014/07/31/redis-sentinel-at-flickr/
http://code.flickr.net/2014/07/31/redis-sentinel-at-flickr/
https://redis.io/topics/persistence
http://redis.io/topics/replication
https://redis.io/topics/sentinel
https://redis.io/topics/sentinel
https://redis.io/commands/wait
https://redislabs.com/ebook/part-3-next-steps/chapter-10-scaling-redis/10-1-scaling-reads/
https://redislabs.com/ebook/part-3-next-steps/chapter-10-scaling-redis/10-1-scaling-reads/
https://github.com/antirez/redis/issues/3730
https://github.com/antirez/redis/issues/3730
https://github.com/rethinkdb/rethinkdb/issues/5925
https://github.com/rethinkdb/rethinkdb/issues/5925
https://www.rethinkdb.com/
https://www.rethinkdb.com/docs/architecture/#data-storage
https://www.rethinkdb.com/docs/architecture/#data-storage
https://github.com/rethinkdb/docs/issues/1167
https://github.com/rethinkdb/docs/issues/1167
https://www.rethinkdb.com/faq/

190

[147] RethinkDB. Silent data loss on metablock corruptions. https://
github.com/rethinkdb/rethinkdb/issues/6034.

[148] Retwis. Retwis. https://github.com/antirez/retwis.
[149] Riak. Riak KV. https://riak.com//.

[150] Robert Escriva.  Claiming Bitcoin’s Bug Bounty.  http://
hackingdistributed.com/2013/11/27/bitcoin-leveldb/.

[151] Robert Harris. =~ Data corruption is worse than you know.
http://www.zdnet.com/article/data-corruption-is-worse-

than-you-know/.

[152] Ron Kuris.  Cassandra From tarball to production.  http:
//www.slideshare.net/planetcassandra/cassandra-from-

tarball-to-production-2.

[153] Mendel Rosenblum and John Ousterhout. The Design and Imple-
mentation of a Log-Structured File System. ACM Transactions on
Computer Systems, 10(1), February 1992.

[154] ]J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end Arguments in
System Design. ACM Trans. Comput. Syst., 2(4), 1984.

[155] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill. Under-
standing Latent Sector Errors and How to Protect Against Them.
In Proceedings of the 8th USENIX Symposium on File and Storage Tech-
nologies (FAST "10), San Jose, CA, February 2010.

[156] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. Flash Re-
liability in Production: The Expected and the Unexpected. In Pro-
ceedings of the 14th USENIX Conference on File and Storage Technologies
(FAST '16), Santa Clara, CA, February 2016.


https://github.com/rethinkdb/rethinkdb/issues/6034
https://github.com/rethinkdb/rethinkdb/issues/6034
https://github.com/antirez/retwis
https://riak.com//
http://hackingdistributed.com/2013/11/27/bitcoin-leveldb/
http://hackingdistributed.com/2013/11/27/bitcoin-leveldb/
http://www.zdnet.com/article/data-corruption-is-worse-than-you-know/
http://www.zdnet.com/article/data-corruption-is-worse-than-you-know/
http://www.slideshare.net/planetcassandra/cassandra-from-tarball-to-production-2
http://www.slideshare.net/planetcassandra/cassandra-from-tarball-to-production-2
http://www.slideshare.net/planetcassandra/cassandra-from-tarball-to-production-2

[157]

[158]

[159]

[160]

[161]

[162]

[163]

191

D.P. Siewiorek, J.J. Hudak, B.H. Suh, and Z.Z. Segal. Development
of a Benchmark to Measure System Robustness. In Proceedings of the
23rd International Symposium on Fault-Tolerant Computing (FTCS-23),

Toulouse, France, June 1993.

Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and
Xi Wang. Push-Button Verification of File Systems via Crash Re-
finement. In Proceedings of the 12th USENIX Conference on Operat-
ing Systems Design and Implementation (OSDI "16), Savannah, GA,
November 2016.

Gopalan Sivathanu, Charles P. Wright, and Erez Zadok. Ensuring
Data Integrity in Storage: Techniques and Applications. In The 1st
International Workshop on Storage Security and Survivability (StorageSS
'05), FairFax County, Virginia, November 2005.

David Smith. The Cost of Lost Data. https://gbr.pepperdine.
edu/2010/08/the-cost-of-lost-data/.

Mike ]J. Spreitzer, Marvin M. Theimer, Karin Petersen, Alan J. De-
mers, and Douglas B. Terry. Dealing with Server Corruption in
Weakly Consistent Replicated Data Systems. Wirel. Netw., 5(5), Oc-
tober 1999.

David T. Stott, Benjamin Floering, Zbigniew Kalbarczyk, and Rav-
ishankar K. Iyer. A Framework for Assessing Dependability in Dis-
tributed Systems with Lightweight Fault Injectors. In Proceedings of
the 4th International Computer Performance and Dependability Sympo-
sium (IPDS "00), Chicago, IL, 2000.

Ryan Scott Stutsman. Durability and Crash Recovery in Distributed
In-Memory Storage Systems. PhD thesis, Stanford University, 2013.


https://gbr.pepperdine.edu/2010/08/the-cost-of-lost-data/
https://gbr.pepperdine.edu/2010/08/the-cost-of-lost-data/

192

[164] Sriram Subramanian, Yupu Zhang, Rajiv Vaidyanathan, Haryadi S
Gunawi, Andrea C Arpaci-Dusseau, Remzi H Arpaci-Dusseau, and
Jeffrey F Naughton. Impact of Disk Corruption on Open-Source
DBMS. In Proceedings of the 26th International Conference on Data En-
gineering (ICDE "10), Long Beach, CA, March 2010.

[165] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving
the Reliability of Commodity Operating Systems. In Proceedings of
the 19th ACM Symposium on Operating Systems Principles (SOSP "03),
Bolton Landing, New York, October 2003.

[166] Amy Tai, Andrew Kryczka, Shobhit O. Kanaujia, Kyle Jamieson,
Michael J. Freedman, and Asaf Cidon. Who's Afraid of Uncor-
rectable Bit Errors? Online Recovery of Flash Errors with Dis-
tributed Redundancy. In Proceedings of the USENIX Annual Technical
Conference (USENIX '19), Renton, WA, July 2019.

[167] Jeff Terrace and Michael J Freedman. Object Storage on CRAQ:
High-Throughput Chain Replication for Read-Mostly Workloads.
In Proceedings of the USENIX Annual Technical Conference (USENIX
'09), San Diego, CA, June 2009.

[168] D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing Update Contflicts in Bayou,
a Weakly Connected Replicated Storage System. In Proceedings of
the 15th ACM Symposium on Operating Systems Principles (SOSP '95),
Copper Mountain Resort, CO, December 1995.

[169] Doug Terry. Replicated Data Consistency Explained Through Base-
ball. Communications of the ACM, 56(12):82-89, 2013.

[170] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike ]. Spreitzer,
Marvin M. Theimer, and Brent B. Welch. Session Guarantees for



[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

193

Weakly Consistent Replicated Data. In Proceedings of the Third Inter-
national Conference on on Parallel and Distributed Information Systems
(PDIS '94), Autin, TX, September 1994.

Theodore Ts’o. What to do when the journal checksum is incorrect.
https://lwn.net/Articles/284038/.

T. K. Tsai and R. K. Iyer. Measuring Fault Tolerance with the FTAPE
Fault Injection Tool. In Proceedings of the 8th International Conference
on Modelling Techniques and Tools for Computer Performance Evalua-

tion: Quantitative Evaluation of Computing and Communication Sys-
tems (MMB ’95), London, UK, September 1995.

Twitter. Kafka at Twitter. https://blog.twitter.com/2015/

handling-five-billion-sessions-a-day-in-real-time.

Uber. The Uber Engineering Tech Stack, Part I: The Foundation.
https://eng.uber.com/tech-stack-part-one/.

Uber. The Uber Engineering Tech Stack, Part II: The Edge And Be-
yond. https://eng.uber.com/tech-stack-part-two/.

Paolo Viotti and Marko Vukoli¢. Consistency in non-transactional
distributed storage systems. ACM Comput. Surv., 49(1):19:1-19:34,
June 2016.

Voldemort. Project Voldemort. http://www.project-voldemort.

com/voldemort/.

Yang Wang, Manos Kapritsos, Zuocheng Ren, Prince Mahajan, Jee-
vitha Kirubanandam, Lorenzo Alvisi, and Mike Dahlin. Robustness
in the Salus Scalable Block Store. In Proceedings of the 10th Sym-
posium on Networked Systems Design and Implementation (NSDI "13),
Lombard, IL, April 2013.


https://lwn.net/Articles/284038/
https://blog.twitter.com/2015/handling-five-billion-sessions-a-day-in-real-time
https://blog.twitter.com/2015/handling-five-billion-sessions-a-day-in-real-time
https://eng.uber.com/tech-stack-part-one/
https://eng.uber.com/tech-stack-part-two/
http://www.project-voldemort.com/voldemort/
http://www.project-voldemort.com/voldemort/

[179]

[180]

[181]

[182]

[183]

[184]

194

Benjamin Wester, James Cowling, Edmund B Nightingale, Peter M
Chen, Jason Flinn, and Barbara Liskov. Tolerating Latency in Repli-
cated State Machines through Client Speculation. In Proceedings of
the 6th Symposium on Networked Systems Design and Implementation
(NSDI '09), Boston, MA, April 2009.

Martyn Williams.  Microsoft loses Sidekick users” personal
data. https://www.infoworld.com/article/2629952/microsoft-

loses-sidekick-users—-personal-data.html.

Youjip Won, Jaemin Jung, Gyeongyeol Choi, Joontaek Oh, Seong-
bae Son, Jooyoung Hwang, and Sangyeun Cho. Barrier-Enabled 10
Stack for Flash Storage. In Proceedings of the 16th USENIX Conference
on File and Storage Technologies (FAST "18), Oakland, CA, February
2018.

Gavin Wood. Ethereum: A Secure Decentralised Generalised

Transaction Ledger.

Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu,
Haoxiang Lin, Mao Yang, Fan Long, Lintao Zhang, and Lidong
Zhou. MODIST: Transparent Model Checking of Unmodified Dis-
tributed Systems. In Proceedings of the 6th Symposium on Networked
Systems Design and Implementation (NSDI "09), Boston, MA, April
20009.

Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues,
Xu Zhao, Yongle Zhang, Pranay U. Jain, and Michael Stumm. Sim-
ple Testing Can Prevent Most Critical Failures: An Analysis of Pro-
duction Failures in Distributed Data-Intensive Systems. In Proceed-
ings of the 11th Symposium on Operating Systems Design and Implemen-
tation (OSDI "14), Broomfield, CO, October 2014.


https://www.infoworld.com/article/2629952/microsoft-loses-sidekick-users--personal-data.html
https://www.infoworld.com/article/2629952/microsoft-loses-sidekick-users--personal-data.html

[185]

[186]

[187]

[188]

[189]

[190]

195

Irene Zhang, Naveen Kr Sharma, Adriana Szekeres, Arvind Krish-
namurthy, and Dan RK Ports. Building consistent transactions with
inconsistent replication. In Proceedings of the 25th ACM Symposium
on Operating Systems Principles (SOSP '15), Monterey, California,
October 2015.

Yupu Zhang, Chris Dragga, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. ViewBox: Integrating Local File Systems
with Cloud Storage Services. In Proceedings of the 12th USENIX Sym-
posium on File and Storage Technologies (FAST '14), Santa Clara, CA,
February 2014.

Yupu Zhang, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. End-to-end Data Integrity for File Sys-
tems: A ZFS Case Study. In Proceedings of the 8th USENIX Sympo-
sium on File and Storage Technologies (FAST "10), San Jose, CA, Febru-
ary 2010.

ZooKeeper. Cluster unavailable on space and write errors. https:
//issues.apache.org/jira/browse/Z00KEEPER-2495.

ZooKeeper. Crash on detecting a corruption. http://mail-
archives.apache.org/mod_mbox/zookeeper-dev/201701.mbox/

browser.

ZooKeeper. Zookeeper service becomes unavailable when leader
fails to write transaction log. https://issues.apache.org/jira/
browse/Z00KEEPER-2247.


https://issues.apache.org/jira/browse/ZOOKEEPER-2495
https://issues.apache.org/jira/browse/ZOOKEEPER-2495
http://mail-archives.apache.org/mod_mbox/zookeeper-dev/201701.mbox/browser
http://mail-archives.apache.org/mod_mbox/zookeeper-dev/201701.mbox/browser
http://mail-archives.apache.org/mod_mbox/zookeeper-dev/201701.mbox/browser
https://issues.apache.org/jira/browse/ZOOKEEPER-2247
https://issues.apache.org/jira/browse/ZOOKEEPER-2247

	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Analysis of Modern Distributed Storage Systems
	Building a Stronger and Efficient Durability Primitive
	Building Strong Consistency upon Consistency-aware Durability
	Contributions
	Overview

	Background
	Distributed Storage Systems
	Faults in Distributed Systems
	Fail-stop Failures
	Byzantine Faults
	Storage Faults

	Leader-based Majority Systems
	Consistency Models
	Strong Consistency
	Weaker Models

	Summary

	Analysis of Distributed Systems Reactions to Storage Faults
	Fault Model
	Methodology
	System Workloads
	Fault Injection
	Behavior Inference

	System Behavior Analysis
	Redis
	ZooKeeper
	Cassandra
	Kafka
	RethinkDB
	MongoDB
	LogCabin
	CockroachDB

	Observations across Systems
	Systems employ diverse data integrity strategies
	Faults are often undetected
	Crashing is the most common reaction
	Redundancy is underutilized
	Crash and corruption handling are entangled
	Local fault handling and global protocols interact in unsafe ways
	Results Summary

	File System Implications
	Developer Interaction
	Discussion
	Summary and Conclusions

	Building a Stronger and Efficient Durability Primitive
	Durability Models
	Immediate Durability
	Eventual Durability
	Consistency and Durability

	Consistency-aware Durability: A New Durability Primitive
	CAD Design
	Leader-based Majority Systems
	Failure Model and Guarantees
	Update Path
	State Durability Guarantee
	Handling Reads: Durability Check
	Read-triggered Durability
	Correctness

	Implementation
	Evaluation
	Write-only Micro-benchmark
	YCSB Macro-benchmarks
	Durability Guarantees
	Summary

	Implementing Cad in Redis
	Redis Overview
	Redis Implementation
	Performance

	Discussion
	Summary and Conclusions

	Building Strong Consistency upon Consistency-aware Durability
	Consistency vs. Performance
	Stronger and Efficient Consistency with CAD
	Cross-client Monotonic Reads and CAD
	Utility of Cross-client Monotonic Reads
	Need for Scalable Cross-client Monotonic Reads

	ORCA Design
	Guarantees
	Cross-Client Monotonic Reads with Leader Restriction
	Scalable Reads with Active Set
	Active Set Membership using Leases
	Correctness
	Implementation

	Evaluation
	Read-only Micro-benchmark
	YCSB Macro-benchmarks
	Performance in Geo-Replicated Settings
	ORCA Consistency

	Application Case Studies
	Summary and Conclusions

	Related Work
	Corruption and Errors in Storage Stack
	Storage Fault Injection
	File-system Studies
	Studies on Layers Above the File System

	Analyzing Distributed System Reliability
	Model Checkers and Bug Finding Tools
	Generic Fault Injection
	Bug Studies

	Durability Semantics
	Cross-client Monotonic Reads
	Improving Distributed System Performance

	Conclusions and Future Work
	Summary
	Storage Faults Analysis
	Consistency-aware Durability
	Cross-client Monotonic Reads

	Lessons Learned
	Future Work
	Storage Faults in Blockchain Systems
	Cad for Other Systems
	Transactions upon Cad and Orca
	Caching on Cad and Orca
	Active sets and Linearizability

	Closing Words

	Bibliography

