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We introduce consistency-aware durability or Cad, a new approach to durability in distributed storage that

enables strong consistency while delivering high performance. We demonstrate the efficacy of this approach

by designing cross-client monotonic reads, a novel and strong consistency property that provides monotonic

reads across failures and sessions in leader-based systems; such a property can be particularly beneficial in

geo-distributed and edge-computing scenarios. We build Orca, a modified version of ZooKeeper that imple-

ments Cad and cross-client monotonic reads. We experimentally show that Orca provides strong consistency

while closely matching the performance of weakly consistent ZooKeeper. Compared to strongly consistent

ZooKeeper, Orca provides significantly higher throughput (1.8–3.3×) and notably reduces latency, some-

times by an order of magnitude in geo-distributed settings. We also implement Cad in Redis and show that

the performance benefits are similar to that of Cad’s implementation in ZooKeeper.
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1 INTRODUCTION

A major focus of distributed storage research and practice has been the consistency model a system
provides. Many models, from linearizability [21] to eventual consistency [16], with several points
in-between [29, 31, 32, 52–54], have been proposed, studied, and are fairly well understood.

Despite many years of research, scant attention has been paid to a distributed system’s under-
lying durability model, which has strong implications on both consistency and performance. At
one extreme, immediate durability requires writes to be replicated and persisted on many nodes
before acknowledgment. This model is often employed to achieve strong consistency. For example,
to prevent stale reads, a linearizable system (such as LogCabin [30]) synchronously makes writes
durable; otherwise, an acknowledged update can be lost, exposing stale values upon subsequent
reads. Immediate durability avoids such cases, but at a high cost: poor performance. Forcing writes
to be replicated and persisted, even with performance enhancements such as batching, reduces
throughput and increases latency dramatically.

At the other extreme is eventual durability: Each write is only lazily replicated and persisted,
perhaps after buffering it in just one node’s memory. Eventual durability is utilized in systems
with weaker consistency models (such as Redis [44]); by acknowledging writes quickly, high per-
formance is realized, but this model leads to weak semantics, exposing stale and out-of-order data
to applications.

In this article, we ask the following question: Is it possible for a durability layer to enable strong
consistency, yet also deliver high performance? We show this is possible if the durability layer
is carefully designed, specifically by taking the consistency model the system intends to realize
into account. We call this approach consistency-aware durability or Cad. We show how cross-client

monotonic reads, a new and strong consistency property, can be realized with high performance
by making the durability layer aware of this model. Cross-client monotonicity cannot be realized
efficiently without a consistency-aware layer: immediate durability can enable it but is slow; it
simply cannot be realized upon eventual durability. In this article, we implement Cad and cross-
client monotonic reads in leader-based replicated systems.

Cross-client monotonic reads guarantees that a read from a client will return a state that is at
least as up-to-date as the state returned to a previous read from any client, irrespective of failures
and across sessions. To realize this property efficiently, Cad shifts the point of durability from
writes to reads: Data is replicated and persisted before it is read. By delaying durability of writes,
Cad achieves high performance; however, by making data durable before it is read, Cad enables
monotonic reads across failures. Cad does not incur overheads on every read; for many workloads,
data can be made durable in the background before applications read it. While enabling strong
consistency, Cad does not guarantee complete freedom from data loss; a few recently written items
that have not been read yet may be lost if failures arise. However, given that many widely used
systems adopt eventual durability and thus settle for weaker consistency [34, 45, 46], Cad offers a
path for these systems to realize stronger consistency without compromising on performance.

Existing linearizable systems do provide cross-client monotonic reads. However, to do so, in
addition to using immediate durability, most systems restrict reads to the leader [25, 36, 40]. Such
restriction limits read throughput and prevents clients from reading from nearby replicas, increas-
ing latency. In contrast, we show how a storage system can realize this property while allowing
reads at many replicas. Such a system can achieve low-latency reads from nearby replicas, mak-
ing it particularly well-suited for geo-distributed settings. Further, such a system can be benefi-
cial in edge-computing use cases, where a client may connect to different servers over the ap-
plication lifetime (e.g., due to mobility [43]), but still can receive monotonic reads across these
sessions.

ACM Transactions on Storage, Vol. 17, No. 1, Article 4. Publication date: January 2021.



Strong and Efficient Consistency with Consistency-aware Durability 4:3

We implement Cad and cross-client monotonic reads in a system called Orca by modifying
ZooKeeper [3]. Orca applies many novel techniques to achieve high performance and strong
guarantees. For example, a durability-check mechanism efficiently separates requests that read
non-durable items from those that access durable ones. Next, a lease-based active set technique
ensures monotonic reads while allowing reads at many nodes. Finally, a two-step lease-breaking

mechanism helps correctly manage active-set membership.
Our experiments show that ZooKeeper with Cad is significantly faster than immediately durable

ZooKeeper (optimized with batching) while approximating the performance of eventually durable
ZooKeeper for many workloads. Even for workloads that mostly read recently written data, Cad’s
overheads are small (only 8%). By allowing reads at many replicas, Orca offers significantly
higher throughput (1.8–3.3×) compared to strongly consistent ZooKeeper (strong-ZK). In a geo-
distributed setting, by allowing reads at nearby replicas, Orca provides 14× lower latency than
strong-ZK in many cases while providing strong guarantees. Orca also closely matches the per-
formance of weakly consistent ZooKeeper (weak-ZK). We show through rigorous tests that Orca
provides cross-client monotonic reads under hundreds of failure sequences generated by a fault-
injector; in contrast, weak-ZK returns non-monotonic states in many cases. We also demonstrate
how the guarantees provided by Orca can be useful in two application scenarios.

Finally, we also demonstrate that the consistency-aware durability idea applies to other systems
as well by implementing Cad in Redis. Our experiments show that Cad in Redis offers performance
benefits similar to our implementation in ZooKeeper. Specifically, Cad is significantly faster than
immediately durable Redis (e.g., 1.82–8.36× higher throughput for various YCSB workloads) and
adds little overhead compared to eventually durable Redis.

2 MOTIVATION

In this section, we discuss how strong consistency requires immediate durability and how only
weak consistency can be built upon eventual durability.

2.1 Strong Consistency atop Immediate Durability

Realizing strong consistency requires immediate durability. For example, consider linearizability,
the strongest guarantee a replicated system can provide. A linearizable system offers two proper-
ties upon reads. First, it prevents clients from seeing non-monotonic states: The system will not
serve a client an updated state at one point and subsequently serve an older state to any client. Sec-
ond, a read is guaranteed to see the latest update: Stale data is never exposed. However, to provide
such strong guarantees upon reads, a linearizable system must synchronously replicate and persist
a write [27]; otherwise, the system can lose data upon failures and so expose inconsistencies. For
example, in majority-based linearizable systems (e.g., LogCabin), the leader synchronously repli-
cates to a majority, and the nodes flush to disk (e.g., by issuing fsync). With such synchronous
durability, linearizable systems can remain available and provide strong guarantees even when all
servers crash and recover.

Unfortunately, such strong guarantees come at the cost of performance. As shown in Table 1,
Redis with synchronous majority replication and persistence is 10× slower than the fully asyn-
chronous configuration in which writes are buffered only on the leader’s memory. While batching
concurrent requests may improve throughput in some systems, immediate durability fundamen-
tally suffers from high latency.

Immediate durability, while necessary, is not sufficient to prevent non-monotonic and stale
reads; additional mechanisms are required. For example, in addition to using immediate dura-
bility, many practical linearizable systems restrict reads to the leader [25, 30, 36, 40]. However,
such a restriction severely limits read throughput; further, it prevents clients from reading from
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Table 1. Immediate Durability Costs

Replication Persistence Throughput (ops/s) Avg. Latency (μs)
async async 24,215 330
sync async 9,889 (2.4× ↓) 809
sync sync 2,345 (10.3× ↓) 3,412

The table shows the overheads of synchronous writes in Redis with five replicas and

eight clients. The arrows show the throughput drop compared to eventual durability.

The replicas are connected via 10-Gbps links and use SSDs for persistence.

their nearest replica, increasing read latencies (especially in geo-distributed settings where clients
have to incur wide-area latencies to reach the leader).

2.2 Weak Consistency atop Eventual Durability

Given the cost of immediate durability, many systems prefer eventual durability in which writes
are replicated and persisted lazily. In fact, such eventual configurations are the default [34, 46]
in widely used systems (e.g., Redis, MongoDB). However, by adopting eventual durability, as we
discuss next, these systems settle for weaker consistency.

Most systems support two kinds of eventual-durability configurations. In the first kind, the sys-
tem synchronously replicates, but persists data lazily (e.g., ZooKeeper with forceSync [4] disabled).
In the second, the system performs both replication and persistence asynchronously (e.g., default
Redis, which buffers updates only on the leader’s memory).

Asynchronous Persistence. With asynchronous persistence, the system can lose data, leading
to poor consistency. Surprisingly, such cases can occur although data is replicated in memory of
many nodes and when just one node crashes. Consider ZooKeeper with asynchronous persistence
as shown in Figure 1(i). At first, a majority of nodes (S1, S2, and S3) have committed an item b,
buffering it in memory; two nodes (S4 and S5) are operating slowly and so have not seen b. When a
node in the majority (S3) crashes and recovers, it loses b. S3 then forms a majority with nodes that
have not seen b yet and gets elected the leader. The system has thus silently lost the committed
item b and so a client that previously read a state containing items a and b may now notice an
older state containing only a, exposing non-monotonic reads. The intact copies on S1 and S2 are
also replaced by the new leader.

Data-loss instances with asynchronous persistence similar to the one shown in Figure 1(i) can
be avoided if the system uses a recovery protocol like in Viewstamped Replication [28]. In such an
approach, a node that has lost its data because of a crash is marked to be in a recovering state; such
a node is precluded from participating in leader election and normal operations until it can recover
its lost data by contacting a majority of nodes. By running such a recovery protocol, this approach
prevents a silent data loss. However, practical systems do not employ such a strategy. Moreover,
such solutions affect availability in some scenarios; for example, when a majority of nodes crash
at the same time, the system will remain unavailable even after all nodes have recovered from
the crash. One way to fix this problem would be to have an administrator do a repair after such
failures [23]. However, such manual intervention can be error-prone; the system can arbitrarily

lose data items that have been read by clients before the failure, exposing out-of-order states.

Asynchronous Replication and Asynchronous Persistence. Similar cases arise with fully
asynchronous systems, too. Consider the scenario shown in Figure 1(ii). The leader (S1) has ac-
knowledged a client of item b after buffering it only in its memory. Assume the leader fails before
it can replicate the update and a few clients read the buffered item b from the leader. Once the
leader fails, the other nodes (that do not have any knowledge of b) elect a new leader among
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Fig. 1. Poor consistency atop eventual durability. (i) shows how non-monotonic reads result upon failures

with systems that persist asynchronously. (ii) shows the same for systems that replicate and persist asyn-

chronously. Data items shown in grey denote that they are persisted (in the background).

themselves and the clients will now observe that the system has lost item b, exposing out-of-order
states.

In essence, systems built upon eventual durability cannot realize strong consistency properties
in the presence of failures. Such systems can serve a newer state before the failure but an older
one after recovery, exposing non-monotonic reads. Only models weaker than linearizability such
as causal consistency can be built atop eventual durability; such models offer monotonic reads
only in the absence of failures and within a single client session. If the server to which the client
is connected crashes and recovers, the client has to establish a new session in which it may see a
state older than what it saw in its previous session [32].

Weakly consistent systems can expose non-monotonic states also because they usually allow
reads at many nodes [14]. For example, a client can reconnect to a different server after a discon-
nection and may read an older state in the new session if a few updates have not been replicated to
this server yet. For the same reason, two sessions to two different servers from a single application
may receive non-monotonic states. While the above cases do not violate causal consistency by
definition (because it is a different session), they lead to poor semantics for applications.

To summarize our discussion thus far, immediate durability enables strong consistency but is
prohibitively expensive. Eventual durability offers high performance, but only weak consistency
can be built upon it. We next discuss how the seemingly conflicting goals of strong consistency
and high performance can be realized together in a storage system by carefully designing its
durability layer.

3 STRONG AND EFFICIENT CONSISTENCY WITH CAD

Our goal in this article is to design a durability primitive that enables strong consistency while
delivering high performance. To this end, we first observe that eventual durability can lose data
arbitrarily upon failures, and so prevents the realization of both non-stale and monotonic reads
together. While preventing staleness requires expensive immediate durability upon every write,
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we note that monotonic reads across failures can be useful in many scenarios and can be realized
efficiently. We design consistency-aware durability or Cad, a new durability primitive that enables
this strong property with high performance.

The main idea underlying Cad is to allow writes to be completed asynchronously but enforce
durability upon reads: Data is replicated and persisted before it is read by clients. By delaying
the durability of writes, Cad achieves high performance. However, by ensuring that the data is
durable before it is read, Cad enables monotonic reads even across failures. Cad does not always
incur overheads when data is read. First, for many workloads, Cad can make the data durable in
the background well before applications read it. Further, only the first read to non-durable data
triggers synchronous replication and persistence; subsequent reads are fast. Thus, if clients do not
read data immediately after writing (which is natural for many workloads), Cad can realize the
high performance of eventual durability but enable stronger consistency. In the case where clients
do read data immediately after writing, Cad incurs overheads but ensures strong consistency.

Upon Cad, we realize cross-client monotonic reads, a strong consistency property. This property
guarantees that a read from a client will always return a state that is at least as up-to-date as the
state returned to a previous read from any client, irrespective of server and client failures and
across sessions. Linearizability provides this property but not with high performance. Weaker
consistency models built atop eventual durability cannot provide this property. Note that cross-
client monotonicity is a stronger guarantee than the traditional monotonic reads that ensures
monotonicity only within a session and in the absence of failures [10, 32, 53].

Cross-client monotonic reads can be useful in many scenarios. As a simple example, consider
the view count of a video hosted by a service; such a counter should only increase monotonically.
However, in a system that can lose data that has been read, clients can notice counter values that
may seem to go backward. As another example, in a location-sharing service, it might be possible
for a user to incorrectly notice that another user went backwards on the route, while in reality, the
discrepancy is caused by the underlying storage system that served the updated location, lost it,
and thus later reverted to an older one. A system that offers cross-client monotonic reads avoids
such cases, providing better semantics.

To ensure cross-client monotonic reads, most existing linearizable systems restrict reads to the
leader, affecting scalability and increasing latency. In contrast, a system that provides this property
while allowing reads at multiple replicas offers attractive performance and consistency character-
istics in many use cases. First, it distributes the load across replicas and enables clients to read from
nearby replicas, offering low-latency reads in geo-distributed settings. Second, similar to lineariz-
able systems, it provides monotonic reads, irrespective of failures, and across clients and sessions,
which can be useful for applications at the edge [38]. Clients at the edge may often get discon-
nected and connect to different servers, but still can get monotonic reads across these sessions.

4 ORCA DESIGN

We now describe Orca, a leader-based majority system that implements consistency-aware dura-
bility and cross-client monotonic reads. We first provide a brief overview of leader-based systems
(Section 4.1) and outline Orca’s guarantees (Section 4.2). We then describe the mechanisms un-
derlying Cad (Section 4.3). Next, we explain how we realize cross-client monotonic reads while
allowing reads at many nodes (Section 4.4). Finally, we explain how Orca correctly ensures cross-
client monotonic reads (Section 4.5) and describe our implementation (Section 4.6).

4.1 Leader-based Majority Systems

In leader-based systems (such as ZooKeeper), all updates flow through the leader, which establishes
a single order of updates by storing them in a log and then replicating them to the followers [22, 41].
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The leader is associated with an epoch: a slice of time, in which at most one leader can exist [6,
41]. Each update is uniquely identified by the epoch in which it was appended and its position
in the log. The leader constantly sends heartbeats to the followers; if the followers do not hear
from the leader for a while, then they elect a new leader. With immediate durability, the leader
acknowledges an update only after a majority of replicas (i.e., �n/2� + 1 nodes in a n-node system)
have persisted the update. With eventual durability, updates are either buffered in memory on
just the leader (asynchronous replication and persistence) or a majority of nodes (asynchronous
persistence) before acknowledgment.

When using immediate durability and restricting reads to the leader, the system provides lin-
earizability: A read is guaranteed to see the latest update and receive monotonic states. With even-
tual durability and when allowing reads at all nodes, these systems only provide sequential con-
sistency [8], i.e., a global order of operations exists but if servers crash and recover, or if clients
read from different servers, reads may be stale and non-monotonic [8, 40].

4.2 Failure Model and Guarantees

Similar to many majority-based systems, Orca intends to tolerate only fail-recover failures, not
Byzantine failures [26]. In the fail-recover model, nodes may fail at any time and recover at a later
point. Nodes fail in two ways: first, they could crash (e.g., due to power failures); second, they may
get partitioned due to network failures. When a node recovers from a crash, it loses its volatile
state and is left only with its on-disk state. During partitions, a node’s volatile state remains intact,
but it may not have seen data that the other nodes have.

Guarantees. Orca preserves the properties of a leader-based system that uses eventual dura-
bility, i.e., it provides sequential consistency. However, in addition, it also provides cross-client
monotonic reads under all failure scenarios (e.g., even if all replicas crash and recover) and across
sessions. Orca is different from linearizable systems in that it does not guarantee that reads will
never see stale data. For example, if failures arise after writing the data but before reading it, Orca
may lose a few recent updates and thus subsequent reads can get an older state. Majority-based
systems remain available as long as a majority of nodes are functional [7, 41]; Orca ensures the
same level of availability.

4.3 CAD Durability Layer

In the rest of this section, we use eventual durability as the baseline to highlight how Cad is
different from it. Cad aims to perform similarly to this baseline but enable stronger consistency.
We now provide intuition about how Cad works and explain its mechanisms.

4.3.1 Updates. Cad preserves the update path of the baseline eventual system as it aims to
provide the same performance during writes. Thus, if the baseline employs asynchronous repli-
cation and persistence, then Cad also performs both replication and persistence asynchronously,
buffering the data in the memory of the leader as shown in Figure 2(i). Similarly, if the baseline
synchronously replicates but asynchronously persists, then Cad also does the same upon writes
as shown in Figure 2(ii). While preserving the update path, in Cad, the leader keeps replicating
updates in the background and the nodes flush to disk periodically.

4.3.2 State Durability Guarantee. When a read for an item i is served, Cad guarantees that
the entire state (i.e., writes even to other items) up to the last update that modifies i are durable.
For example, consider a log such as [a,b1, c,b2,d]; each entry denotes a (non-durable) update to
an item, and the subscript shows how many updates are done to a particular item. When item b
is read, Cad guarantees that all updates at least up to b2 are made durable before serving b. Cad
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Fig. 2. Cad update path. The figure shows the update path in Cad. Data items that are durable are shown in

grey boxes. In (i), the baseline performs both replication and persistence asynchronously; in (ii), the baseline

synchronously replicates but persists lazily in the background. When a client writes item b, the write is

acknowledged beforeb is made durable similar to the baselines. Cad then makesb durable in the background

by replicating and persisting b on other nodes asynchronously.

makes the entire state durable instead of just the item, because it aims to preserve the update order
established by the leader (as done by the base system).

Cad considers the state to be durable when it can recover the data after any failures including
cases where all replicas crash and recover and in all successive views of the cluster. Majority-based
systems require at least a majority of nodes to form a new view (i.e., elect a leader) and provide
service to clients. Thus, if Cad safely persists data on at least a majority of nodes, then at least one
node in any majority even after failures will have all the data that has been made durable (i.e., that
was read by the clients) and thus will survive into the new view. Therefore, Cad considers data to
be durable when it is persisted on the disks of at least a majority of nodes.

4.3.3 Handling Reads: Durability Check. We now discuss how Cad handles reads; We use
Figure 3 to do so. When a read request for an item i arrives at a node, the node can immedi-
ately serve i from its memory if all updates to i are already durable (e.g., Figure 3, read of item a);
otherwise, the node must take additional steps to make the data durable. As a result, the node first
needs to be able to determine if all updates to i have been made durable or not.

A naive way to perform this check would be to maintain for each item how many nodes have
persisted the item; if at least a majority of nodes have persisted an item, then the system can serve
it. A shortcoming of this approach is that the followers must inform the leader the set of items
they have persisted in each response, and the leader must update the counts for all items in the set
on every acknowledgment.

Cad simplifies this procedure by exploiting the ordering of updates established by the
leader. Such ordering is an attribute common to many majority-based systems; for example, the
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Fig. 3. Cad durability check. The figure shows how Cad works. Data items shown in grey are durable. In (i),

the baseline is fully asynchronous; in (ii), the baseline synchronously replicates but asynchronously persists.

At first, when item a is durable, read(a) passes the durability check. Items b and c are not yet durable. The

check for read(b) fails; hence, the leader makes the state durable after which it serves b.

ZooKeeper leader stamps each update with a monotonically increasing epoch-counter pair before
appending it to the log [5]. In Cad, with every response, the followers send the leader only a single
index called the persisted-index, which is the epoch-counter of the last update they have written
to disk. The leader also maintains only a single index called the durable-index, which is the index
up to which at least a majority of nodes have persisted; the leader calculates the durable-index by
finding the highest persisted-index among at least a majority (including self).

When a read for an item i arrives at the leader, it compares the update-index of i (the epoch-
counter of the latest update that modifies i) against the system’s durable-index. If the durable-index
is greater1 than the update-index, then all updates to i are already durable and so the leader serves i
immediately; otherwise, the leader takes additional steps (described next) to make the data durable.
If the read arrives at a follower, it performs the same check (using the durable-index sent by the
leader in the heartbeats). If the check passes, it serves the read; otherwise, it redirects the request
to the leader, which then makes the data durable.

4.3.4 Making the Data Durable. If the durability check fails, Cad needs to make the state (up to
the latest update to the item being read) synchronously durable before serving the read. The leader
treats the read for which the check fails specially. First, the leader synchronously replicates all
updates up to the update-index of the item being read if these updates have not yet been replicated.
The leader also informs the followers that they must flush their logs to disk before responding to
this request.

1An index a is greater than index b if (a.epoch > b.epoch) or (a.epoch == b.epoch and a.counter > b.counter).
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Fig. 4. Non-monotonic reads. The figure shows how non-monotonic states can be exposed atop Cad when

reading at the followers.

When the followers receive such a request, they synchronously append the updates and flush the
log to disk and respond. During such a flush, all previous writes buffered are also written to disk,
ensuring that the entire state up to the latest update to the item being read is durable. Fortunately,
the periodic background flushes reduce the amount of data that needs to be written during such
foreground flushes. The persisted-index reported by a node as a response to this request is at least
as high as the update-index of the item. When the flush finishes on a majority, the durable-index
will be updated, and thus the data item can be served. The second column of Figure 3 shows how
this procedure works. As shown, the durability check fails when item b is read; the nodes thus
flush all updates up to index 2 and so the durability-index advances; the item is then served.

As an optimization, Orca also persists writes that are after the last update to the item being read.
Consider the log [a,b, c] in Figure 3; when a client readsb, the durability check fails. Now, although
it is enough to persist entries up to b, Cad also flushes update c , obviating future synchronous
flushes when c is read as shown in the last column of the figure.

To summarize, Cad makes data durable upon reads and so guarantees that state that has been
read will never be lost even if servers crash and recover. We next discuss how upon this durability
primitive we build cross-client monotonic reads.

4.4 Cross-client Monotonic Reads

If reads are restricted only to the leader, a design that many linearizable systems adopt, then cross-
client monotonic reads is readily provided by Cad; no additional mechanisms are needed. Given
that updates go only through the leader, the leader will have the latest data, which it will serve on
reads (if necessary, making it durable before serving). Further, if the current leader fails, the new
view will contain the state that was read. Thus, monotonic reads are ensured across failures.

However, restricting reads only to the leader limits read scalability and prevents clients from
reading at nearby replicas. Most practical systems (e.g., MongoDB, Redis), for this reason, allow
reads at many nodes [33, 35, 49]. However, when allowing reads at the followers, Cad alone cannot
ensure cross-client monotonic reads. Consider the scenario in Figure 4. The leader S1 has served
versions a1 and a2 after making them durable on a majority. However, follower S5 is partitioned
and so has not seen a2. When a read later arrives at S5, it is possible for S5 to serve a1; although S5

checks that a1 is durable, it does not know that a has been updated and served by others, exposing
non-monotonic states. Thus, additional mechanisms are needed, which we describe next.

4.4.1 Scalable Reads with Active Set. A naive way to solve the problem shown in Figure 4 is to
make the data durable on all the followers before serving reads from the leader. However, such
an approach would lead to poor performance and, more importantly, decreased availability: Reads
cannot be served unless all nodes are available. Instead, Orca solves this problem using an active
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Fig. 5. Active set and leases. (i) shows how removing a follower hastily can expose non-monotonic states;

(ii) shows how Orca breaks leases.

set. The active set contains at least a majority of nodes. Orca enforces the following rules with
respect to the active set:

R1: When the leader intends to make a data item durable (before serving a read), it ensures that
the data is persisted and applied by all the members in the active set.

R2: Only nodes in the active set are allowed to serve reads.
The above two rules together ensure that clients never see non-monotonic states. R1 ensures

that all nodes in the active set contain all data that has been read by clients. R2 ensures that only
such nodes that contain data that has been previously read can serve reads; other nodes that do
not contain the data that has been served (e.g., S5 in Figure 4) are precluded from serving reads,
preventing non-monotonic reads. The key challenge now is to maintain the active set correctly.

4.4.2 Membership Using Leases. The leader constantly (via heartbeats and requests) informs
the followers whether they are part of the active set or not. The active-set membership message
is a lease [12, 19] provided by the leader to the followers: If a follower F believes that it is part of
the active set, then it is guaranteed that no data will be served to clients without F persisting and
applying the data. The lease breaks when a follower does not hear from the leader for a while. Once
the lease breaks, the follower cannot serve reads anymore. The leader also removes the follower
from the active set, allowing the leader to serve reads by making data durable on the updated
(reduced) active set.

To ensure correctness, a follower must mark itself out before the leader removes it from the
active set. Consider the scenario in Figure 5(i), which shows how non-monotonic states can be
exposed if the leader removes a disconnected follower from the active set hastily. Initially, the
active set contains all the nodes, and so upon a read, the leader tries to make a2 durable on all
nodes; however, follower S5 is partitioned. Now, if the leader removes S5 (before S5 marks itself
out) and serves a2, then it is possible for S5 to serve a1 later, exposing out-of-order states. Thus,
for safety, the leader must wait for S5 to mark itself out and then only remove S5 from the active
set, allowing the read to succeed.

Orca breaks leases using a two-step mechanism: first, a disconnected follower marks itself out
of the active set; the leader then removes the follower from the active-set. Orca realizes the two-
step mechanism using two timeouts: a mark-out timeout (mt) and a removal timeout (rt); once mt

passes, the follower marks itself out; once rt passes, the leader removes the follower from the active
set. Orca sets rt significantly greater than mt (e.g., rt >= 5 ∗mt ) and mt is set to the same value
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as the heartbeat interval. Figure 5(ii) illustrates how the two-step mechanism works in Orca. The
performance impact is minimal when the leader waits to remove a failed follower from the active
set. Specifically, only reads that access (recently written) items that are not durable yet must wait
for the active set to be updated; the other vast majority of reads can be completed without any
delays.

Like any lease-based system, Orca requires non-faulty clocks with a bounded drift [19]. By the
time rt passes for the leader, mt must have passed for the follower; otherwise, non-monotonic
states may be returned. However, this is highly unlikely, because we set rt to a multiple of mt; it is
unlikely for the follower’s clock to run too slowly or the leader’s clock to run too quickly that rt has
passed for the leader but mt has not for the follower. In many deployments, the worst-case clock
drift between two servers is as low as 30 μs/sec [18], which is far less than what Orca expects.
Note that Orca requires only a bounded drift, not synchronized clocks.

On a read, a follower checks if it is a part of the active set. The follower then checks if the item
being read is durable by comparing the update-index of the item with the durable-index (sent by
the leader during heartbeats). If the durability check passes, the follower serves the read; else, it
redirects the request to the leader, which then makes the read durable on the active set. Note that
the durable-index might be lagging in the followers when compared to the leader. If the durable-
index is stale, then the follower might consider a durable item to be non-durable and redirect that
request to the leader. Therefore, this staleness does not affect correctness. When a failed follower
recovers (from a crash or a partition), the leader adds the follower to the active set. However, the
leader ensures that the recovered node has persisted and applied all entries up to the durable-index
before adding the node to the active set. Sometimes, a leader may break the lease for a follower G
even when it is constantly hearing from G, but G is operating slowly (perhaps due to a slow link
or disk), increasing the latency to flush when a durability check fails. In such cases, the leader may
inform the follower that it needs to mark itself out and then the leader also removes the follower
from the active set.

The size of the active set presents a tradeoff between scalability and latency. If many nodes are
in the active set, reads can be served from them all, improving scalability; however, reads that
access recently written non-durable data can incur more latency, because data has to be replicated
and persisted on many nodes. In contrast, if the active set contains a bare majority, then data can
be made durable quickly, but reads can be served only by a majority.

Deposed leaders. A subtle case that needs to be handled is when a leader is deposed by a new
one, but the old leader does not know about it yet. The old leader may serve some old data that
was updated and served by the other partition, causing clients to see non-monotonic states. Orca
solves this problem with the same lease-based mechanism described above. When followers do not
hear from the current leader, they elect a new leader but do so after waiting for a certain timeout.
By this time, the old leader realizes that it is not the leader anymore, steps down, and stops serving
reads.

4.5 Correctness

Orca never returns non-monotonic states, i.e., a read from a client always returns at least the
latest state that was previously read by any client. We now provide a proof sketch for how Orca
ensures correctness under all scenarios.

First, when the current leader is functional, if a non-durable item (whose update-index is L) is
read, Orca ensures that the state at least up to L is persisted on all the nodes in the active set
before serving the read. Thus, reads performed at any node in the active set will return at least
the latest state that was previously read (i.e., up to L). Followers not present in the active set may
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be lagging but reads are not allowed on them, preventing them from serving an older state. When
a follower is added to the active set, Orca ensures that the follower contains state at least up to
L; thus, any subsequent reads on the added follower will return at least the latest state that was
previously read, ensuring correctness. When the leader removes a follower, Orca ensures that the
follower marks itself out before the leader returns any data by committing it on the new reduced
set, which prevents the follower from returning any older state.

When the current leader fails, Orca must ensure that latest state that was read by clients sur-
vives into the new view. We argue that this is ensured by how elections work in Orca (and in many
majority-based systems). Let us suppose that the latest read has seen state up to index L. When
the leader fails and subsequently a new view is formed, the system must recover all entries at least
up to L for correctness; if not, an older state may be returned in the new view. The followers, on
a leader failure, become candidates and compete to become the next leader. A candidate must get
votes from at least a majority (may include self) to become the leader. When requesting votes, a
candidate specifies the index of the last entry in its log. A responding node compares the incoming
index (P ) against the index of the last entry in its own log (Q). If the node has more up-to-date
data in its log than the candidate (i.e.,Q > P ), then the node does not give its vote to the candidate.
This is a property ensured by many majority-based systems [2, 6, 41], which Orca preserves.

Because Orca persists the data on all the nodes in the active set and given that the active set
contains at least a majority of nodes, at least one node in any majority will contain state up to L
on its disk. Thus, only a candidate that has state at least up to L can get votes from a majority and
become the leader. In the new view, the nodes follow the new leader’s state. Given that the leader
is guaranteed to have state at least up to L, all data that have been served so far will survive into
the new view, ensuring correctness.

4.6 Implementation

We have built Orca by modifying ZooKeeper (v3.4.12). We first implement Cad by changing
ZooKeeper’s durability layer. Upon Cad, we build scalable cross-client monotonic reads, which
allows reads at many nodes. In addition, we also implement Cad in Redis to show that the idea
applies to other systems as well. We now explain the ZooKeeper implementation in detail and then
evaluate it in the next section (Section 5). We describe the Redis implementation and evaluate its
performance in the subsequent section (Section 6).

We have two baselines in ZooKeeper. First, ZooKeeper with synchronous replication but asyn-
chronous persistence (i.e., ZooKeeper with forceSync disabled). Second, ZooKeeper with asynchro-
nous replication; we modified ZooKeeper to obtain this baseline.

In ZooKeeper, write operations either create new key-value pairs or update existing ones. As we
discussed, Orca follows the same code path of the baseline for these operations. In addition, Orca
replicates and persists updates constantly in the background. Read operations return the value for
a given key. On a read, Orca performs the durability check (by comparing the key’s update-index
against the system’s durable-index) and enforces durability if required.

Orca incurs little metadata overhead compared to unmodified ZooKeeper to perform the dura-
bility check. Specifically, ZooKeeper already maintains the last-updated index for every item (as
part of the item itself [9]), which Orca reuses. Thus, Orca needs to additionally maintain only the
durable-index, which is eight bytes in size. However, some systems may not maintain the update
indexes; in such cases, Cad needs eight additional bytes for every item compared to the unmodified
system, a small price to pay for the performance benefits.

Performing the durability check is simple in ZooKeeper, because what item a request will read
is explicitly specified in the request. However, doing this check in a system that supports range
queries or queries such as “get all users at a particular location” may require a small additional
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step. The system would need to first tentatively execute the query and determine what all items
will be returned; then, it would enforce durability if one or more items are not durable yet.

We modified the replication requests and responses as follows: The followers include the
persisted-index in their response and the leader sends the followers the durable-index in the re-
quests or heartbeats. These messages are also used to maintain the active-set lease. We set the
durable-index as the maximum index that has been persisted and applied by all nodes in the active
set. We set the follower mark-out timeout to the same value as the heartbeat interval (100 ms in
our implementation). We set the removal timeout to 500 ms.

5 EVALUATION

In our evaluation, we ask the following questions:

• How does Cad perform compared to immediate and eventual durability?
• How does Orca perform compared to weakly consistent ZooKeeper and strongly consistent

ZooKeeper?
• Does Orca ensure cross-client monotonic reads in the presence of failures?
• Does Orca provide better guarantees for applications?

We conduct a set of experiments to answer these questions. We run our performance experi-
ments with five replicas. Each replica is a 20-core Intel Xeon CPU E5-2660 machine with 256 GB
memory running Linux 4.4 and uses a 480-GB SSD to store data. The replicas are connected via
a 10-Gbps network. We use six YCSB workloads [15] that have different read-write ratios and
access patterns: W (write-only), A (w:50%, r:50%), B (w:5%, r:95%), C (read-only), D (read latest,
w:5%, r:95%), F (read-modify-write:50%, r:50%). We do not run YCSB-E, because ZooKeeper does
not support range queries. Numbers reported are the average over five runs.

5.1 CAD Performance

We first evaluate the performance of the durability layer in isolation; we compare Cad against
immediate and eventual durability. With eventual durability and Cad, the system performs both
replication and persistence asynchronously. With immediate durability, the system replicates and
persists writes (using fsync) on a majority in the critical path; it employs batching to improve
performance.

5.1.1 Write-only Micro-benchmark. We first compare the performance for a write-only work-
load. Intuitively, Cad should outperform immediate durability and match the performance of even-
tual durability for such a workload. Figure 6 shows the results: We plot the average latency seen
by clients against the throughput obtained when varying the number of closed-loop clients from
1 to 100. We show two variants of immediate durability: one with batching and the other without.
We show the no-batch variant only to illustrate that it is too slow and we do not use this variant
for comparison; throughout our evaluation, we compare only against the optimized immediate-
durability variant that employs batching.

We make the following three observations from the figure: First, immediate durability with
batching offers better throughput than the no-batch variant; however, even with aggressive batch-
ing across 100 clients, it cannot achieve the high throughput levels of Cad. Second, writes in-
cur significantly lower latencies in Cad compared to immediate durability; for instance, at about
25 Kops/s (the maximum throughput achieved by immediate durability), Cad’s latency is 7× lower.
Finally, Cad’s throughput and latency characteristics are very similar to that of eventual durability.

5.1.2 YCSB Macro-benchmarks. We now compare the performance across four YCSB workloads
that have a mix of reads and writes. A, B, and F have a zipfian access pattern (most operations access
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Fig. 6. Write-only workload: Latency vs. throughput. The figure plots the average latency against throughput

by varying the number of clients for a write-only workload for different durability layers.

Table 2. Cad Performance

Workload Throughput (Kops/s) % of reads triggering
sync async Cad synchronous durability in Cad

A 10.2 35.3 (3.5×) 33.7 (3.3×) 5.1 (of 50% reads)
B 23.1 39.4 (1.7×) 38.7 (1.7×) 0.83 (of 95% reads)
D 23.3 40.1 (1.7×) 36.9 (1.6×) 4.32 (of 95% reads)
F 11.8 35.7 (3.0×) 34.6 (2.9 ×) 4.07 (of 67% reads)

The table compares the throughput of the three durability layers; the numbers in parentheses in

columns 3 and 4 are the factor of improvement over immediate durability. The last column shows

the percentage of reads that trigger synchronous replication and persistence in Cad.

popular items); D has a latest access pattern (most reads are to recently modified data). We run
this experiment with 10 clients. We restrict the reads only to the leader for all three systems, as
we are evaluating only the durability layers. Table 2 shows the results.

Compared to immediate durability with batching, Cad’s performance is significantly better.
Cad is about 1.6× and 3× faster than immediate durability for read-heavy workloads (B and D)
and write-heavy workloads (A and F), respectively.

Cad must ideally match the performance of eventual durability. First, performance of writes
in Cad should be identical to eventual durability; making data durable on reads should not affect
writes. Figure 7 shows the latency distribution of writes for the three durability layers for different
YCSB workloads that have a mix of reads and writes. As shown, Cad matches the performance of
eventual durability for both write-heavy and read-heavy workloads.

Second, most read operations in Cad must experience latencies similar to reads in eventual
durability. However, reads that access non-durable items may trigger synchronous replication and
persistence, causing a reduction in performance. This effect can be seen in the read latency distri-
butions shown in Figure 8. As shown, a fraction of reads (depending upon the workload) trigger
synchronous replication and persistence, and thus incur higher latencies. However, as shown in
Table 2, for the variety of workloads in YCSB, this fraction is small. Therefore, the drop in perfor-
mance for Cad compared to eventual durability is little (2%–8%).

A bad workload for Cad is one that predominantly reads recently written items. Even for such
a workload, the percentage of reads that actually trigger immediate durability is small due to
prior reads that make state durable and periodic background flushes in Cad. For example, with
YCSB-D, although 90% of reads access recently written items, only 4.32% of these requests trigger
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Fig. 7. YCSB write latencies. (a)(i) and (a)(ii) show the write latency distributions for the three durability

layers for write-heavy YCSB workloads. (b)(i) and (b)(ii) show the same for read-heavy YCSB workloads.

synchronous replication and persistence (as shown in Figure 8 (b)(ii)); thus, Cad’s overhead
compared to eventual durability is little (only 8%).

Cad performance summary. Cad is significantly faster than immediate durability (that is opti-
mized with batching) while matching the performance of eventual durability for many workloads.
Even for workloads that mostly read recently modified items, Cad’s overheads are small.

5.2 ORCA System Performance

We now evaluate the performance of Orca against two versions of ZooKeeper: strong-ZK and
weak-ZK. Strong-ZK is ZooKeeper with immediate durability (with batching), and with reads
restricted to the leader; strong-ZK provides linearizability and thus cross-client monotonic reads.
Weak-ZK replicates and persists writes asynchronously and allows reads at all replicas; weak-ZK
does not ensure cross-client monotonic reads. Orca uses the Cad durability layer and reads can
be served by all replicas in the active set; we configure the active set to contain four replicas in
our experiments.

5.2.1 Read-only Micro-benchmark. We first demonstrate the benefit of allowing reads at many
replicas using a read-only benchmark. Figure 9 plots the average latency against the read through-
put for the three systems when varying the number of clients from 1 to 100. Strong-ZK restricts
reads to the leader to provide strong guarantees, and so its throughput saturates after a point; with
many concurrent clients, reads incur high latencies. Weak-ZK allows reads at many replicas and
so can support many concurrent clients, leading to high throughput and low latency; however, the

ACM Transactions on Storage, Vol. 17, No. 1, Article 4. Publication date: January 2021.



Strong and Efficient Consistency with Consistency-aware Durability 4:17

Fig. 8. YCSB read latencies. (a)(i) and (a)(ii) show read latencies for eventual durability and Cad for write-

heavy YCSB workloads. (b)(i) and (b)(ii) show the same for read-heavy YCSB workloads. The annotation

within a close-up shows the percentage of reads that trigger synchronous durability in Cad.

Fig. 9. Orca Performance: Read-only Micro-benchmark. The figure plots the average latency against

throughput by varying the number of clients for a read-only workload for the three systems.

cost is weaker guarantees as we show soon (Section 5.3). In contrast, Orca provides strong guar-
antees while allowing reads at many replicas and thus achieving high throughput and low latency.
The throughput of weak-ZK and Orca could scale beyond 100 clients, but we do not explore such
cases in this experiment.
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Fig. 10. Orca performance. The figure compares the throughput of the three systems across different

YCSB workloads. In (a), weak-ZK and Orca asynchronously replicate and persist; in (b), they replicate syn-

chronously but persist data lazily. The number on top of each bar shows the performance normalized to that

of strong-ZK.

Fig. 11. Geo-distributed experiment. The figure shows how the replicas and clients are located across mul-

tiple data centers in the geo-distributed experiment.

5.2.2 YCSB Macro-benchmarks. We now compare the performance of Orca against weak-ZK
and strong-ZK across different YCSB workloads with 10 clients. Figure 10 shows the results.

In Figure 10(a), weak-ZK and Orca carry out both replication and persistence lazily; whereas,
in 10(b), weak-ZK and Orca replicate synchronously but persist to storage lazily, i.e., they issue
fsync-s in the background. As shown in Figure 10(a), Orca is notably faster than strong-ZK (3.04–
3.28× for write-heavy workloads, and 1.75–1.97× for read-heavy workloads). Orca performs well
due to two reasons. First, it avoids the cost of synchronous replication and persistence during
writes. Second, it allows reads at many replicas, enabling better read throughput. Orca also closely
approximates the performance of weak-ZK: Orca is only about 11% slower on an average. This
reduction arises because reads that access non-durable items must persist data on all the nodes in
the active set (in contrast to only a majority as done in Cad); further, reads at the followers that
access non-durable data incur an additional round trip, because they are redirected to the leader.
Similar results and trends can be seen for the asynchronous-persistence baseline in Figure 10(b).

5.2.3 Performance in Geo-replicated Settings. We now analyze the performance of Orca in a
geo-replicated setting by placing the replicas in three data centers (across the US), with no data
center having a majority of replicas. The replicas across the data center are connected over WAN.
We run the experiments with 24 clients, with roughly five clients near each replica. Figure 11 shows
this setup. In weak-ZK and Orca, reads are served at the closest replica; in strong-ZK, reads go
only to the leader. In all three systems, writes are performed only at the leader.
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Fig. 12. Geo-distributed latencies. The figure shows the distribution of operation latencies across different

workloads in a geo-distributed setting. For each workload, (i) shows the distribution of latencies for opera-

tions originating near the leader; (ii) shows the same for requests originating near the followers. The ping

latency between a client and its nearest replica is <2ms; the same between the client and a replica over WAN

is ∼35 ms.

Figure 12 shows the distribution of operation latencies across different workloads. We differen-
tiate two kinds of requests: ones originating near the leader (the top row in the figure) and ones
originating near the followers (the bottom row). As shown in Figure 12(a)(i), for a read-only work-
load, in all systems, reads originating near the leader are completed locally and thus experience
low latencies (∼2 ms). Requests originating near the followers, as shown in 12(a)(ii), incur one
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Fig. 13. An example failure sequence. The figure shows an example sequence generated by our test

framework.

WAN RTT (∼33 ms) to reach the leader in strong-ZK; in contrast, weak-ZK and Orca can serve
such requests from the nearest replica and thus incur 14× lower latencies.

For a write-only workload, in strong-ZK, writes originating near the leader must incur one WAN
RTT (to replicate to a majority) and disk writes, in addition to the one local RTT to reach the leader.
In contrast, in weak-ZK and Orca, such updates can be satisfied after buffering them in the leader’s
memory, reducing latency by ∼ 14×. Writes originating near the followers in strong-ZK incur two
WAN RTTs (one to reach the leader and other for majority replication) and disk latencies; such
requests, in contrast, can be completed in one WAN RTT in weak-ZK and Orca, reducing latency
by ∼ 2×.

Figures 12(c) and 12(d) show the results for workloads with a read-write mix. As shown, in
strong-ZK, most operations incur high latencies; even reads originating near the leader sometimes
experience high latencies, because they are queued behind slow synchronous writes as shown
in 12(c)(i). In contrast, most requests in Orca and weak-ZK can be completed locally and thus
experience low latencies, except for writes originating near the followers that require one WAN
RTT, an inherent cost in leader-based systems (e.g., 50% of operations in Figure 12(d)(ii)). Some
requests in Orca incur higher latencies because they read recently modified data. However, only
a small percentage of requests experience such higher latencies, as shown in Figure 12(d)(i).

Orca performance summary. By avoiding the cost of synchronous replication and persistence
during writes, and allowing reads at many replicas, Orca provides higher throughput (1.8–3.3×)
and lower latency than strong-ZK. In the geo-distributed setting, Orca significantly reduces la-
tency (14×) for most operations by allowing reads at nearby replicas and hiding WAN latencies
with asynchronous writes. Orca also approximates the performance of weak-ZK. However, as we
show next, Orca does so while enabling strong consistency guarantees that weak-ZK cannot offer.

5.3 ORCA Consistency

We now check if Orca’s implementation correctly ensures cross-client monotonic reads in the
presence of failures and also test the guarantees of weak-ZK and strong-ZK under failures. To do
so, we developed a framework that can drive the cluster to different states by injecting crash and
recovery events. Figure 13 shows an example sequence. At first, all nodes are alive; then nodes
1, 3 crash; 1 recovers; 2 crashes; 3 recovers; finally, 2 recovers. In addition to crashing, we also
randomly choose a node and introduce delays to it; such a lagging node may not have seen a few

updates. For example, 1 2345→ 245→ 1 2 45→ 145→ 134 5 → 12345 shows how nodes 1, 2,
and 5 experience delays in a few states.

We insert new items at each stage and perform reads on the non-delayed nodes. Then, we
perform a read on the delayed node, triggering the node to return old data, thus exposing non-
monotonic states. Every time we perform a read, we check whether the returned result is at least
as latest as the result of any previous read. Using the framework, we generated 500 random se-
quences similar to the one in Figure 13. We subject weak-ZK, strong-ZK, and Orca to the generated
sequences.
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Table 3. Orca Correctness

(a) Async persistence (b) Async replication & persistence

System Outcomes (%)
Correct Non-monotonic

weak-ZK 17 83
strong-ZK 100 0

sync-ZK-all 63 37
Orca 100 0

System Outcomes (%)
Correct Non-monotonic

weak-ZK 4 96
strong-ZK 100 0

sync-ZK-all 63 37
Orca 100 0

The tables show how Orca provides cross-client monotonic reads. In (a), weak-ZK and Orca use asynchro-

nous persistence; in (b), both replication and persistence are asynchronous.

Table 3(a) shows results when weak-ZK and Orca synchronously replicate but asynchronously
persist. With weak-ZK, non-monotonic reads arise in 83% of sequences due to two reasons. First,
read data is lost in many cases due to crash failures, exposing non-monotonic reads. Second, de-
layed followers obliviously serve old data after other nodes have served newer state. Strong-ZK, by
using immediate durability and restricting reads to the leader, avoids non-monotonic reads in all
cases. Note that while immediate durability can avoid non-monotonic reads caused due to data loss,
it is not sufficient to guarantee cross-client monotonic reads. Specifically, as shown in the table,
sync-ZK-all, a configuration that uses immediate durability but allows reads at all nodes, does not
prevent lagging followers from serving older data, exposing non-monotonic states. In contrast to
weak-ZK, Orca does not return non-monotonic states. In most cases, a read performed on the
non-delayed nodes persists the data on the delayed follower, too, returning up-to-date data from
the delayed follower. In a few cases (about 13%), the leader removed the follower from the active
set (because the follower is experiencing delays). In such cases, the delayed follower rejects the
read (because it is not in the active set); however, retrying after a while returns the latest data
because the leader adds the follower back to the active set. Similar results can be seen in Table 3(b)
when weak-ZK and Orca asynchronously replicate and persist writes.

5.4 Application Case Studies

We now show how the guarantees provided by Orca can be useful in two application scenarios.
The first one is a location-sharing application in which a user updates their location (e.g., a→ b→
c) and another user tracks the location. To provide meaningful semantics, the storage system must
ensure monotonic states for the reader; otherwise, the reader might incorrectly see that the user
went backwards. While systems that provide session-level guarantees can ensure this property
within a session, they cannot do so across sessions (e.g., when the reader closes the application and
re-opens, or when the reader disconnects and reconnects). Cross-client monotonic reads, however,
provide this guarantee irrespective of sessions and failures.

We test this scenario by building a simple location-tracking application. A set of users update
their locations on the storage system, while another set of users reads those locations. Clients may
connect to different servers over the lifetime of the application. Table 4 shows results. As shown,
weak-ZK exposes inconsistent (non-monotonic) locations in 13% of reads and consistent but old
(stale) locations in 39% of reads. In contrast to weak-ZK, Orca prevents non-monotonic locations,
providing better semantics. Further, it also reduces staleness because of prior reads that make state
durable. As expected, strong-ZK never exposes non-monotonic or old locations.

The second application is similar to Retwis, an open-source Twitter clone [50]. Users can either
post tweets or read their timeline (i.e., read tweets from users they follow). If the timeline is not
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Table 4. Case Study: Location-tracking and Retwis

Outcome(%) Location-tracking Retwis
weak-ZK strong-ZK Orca weak-ZK strong-ZK Orca

Inconsistent 13 0 0 8 0 0
Consistent (old) 39 0 7 20 0 12
Consistent (latest) 48 100 93 72 100 88

The table shows how applications can see inconsistent (non-monotonic) and consistent (old or latest) states

with weak-ZK, strong-ZK, and Orca.

monotonic, then users may see some posts that may disappear later from the timeline, providing
confusing semantics [14]. Cross-client monotonic reads avoids this problem, providing stronger
semantics for this application.

The workload in this application is read-dominated: Most requests retrieve the timeline, while a
few requests post new content. We thus use the following workload mix: 70% get-timeline and 30%
posts, leading to a total of 95% reads and 5% writes for the storage system. Results are similar to
the previous case study. Weak-ZK returns non-monotonic and stale timelines in 8% and 20% of get-
timeline operations, respectively. Orca completely avoids non-monotonic timelines and reduces
staleness, providing better semantics for clients.

6 IMPLEMENTING Cad IN REDIS

So far, we discussed how we implemented and evaluated Cad in ZooKeeper. We now demonstrate
that Cad applies to other systems as well. We also show that implementing Cad requires only
moderate developer effort, requiring minimal code changes. To this end, we implement Cad in Re-
dis, another widely used leader-based system. In this section, we first provide an overview of Redis
and then describe our implementation. We then evaluate the performance of our implementation
and compare it against baseline Redis.

6.1 Redis Overview

Redis is a popular leader-based data structure store. Clients submit write requests to the leader,
which appends the update to an on-disk append-only file and then replicates the update to the
followers. Similar to ZooKeeper, Redis also has two baselines. In the fully asynchronous baseline,
Redis performs both replication and persistence asynchronously, i.e., updates are acknowledged
immediately after they have been buffered in memory on the leader; this is the default configura-
tion in Redis. We also configure Redis to replicate synchronously (using the WAIT option [48]) but
persist asynchronously to obtain the second baseline. In both the baselines, Redis issues fsync in
the background periodically (every second).

Cad-Redis follows the same code path of the baseline for updates. However, upon reads, it
performs the durability check and enforces durability if necessary before serving reads.

We compare the baselines and Cad-Redis against an immediately durable version of Redis,
which performs both replication and persistence synchronously. We obtain this immediately
durable configuration by setting appropriate values for the WAIT and the appendfsync options.

6.2 Redis Implementation

We implement Cad in Redis v4.0.11. Native Redis does not perform automatic failover (i.e., if
the current leader fails, then it does not elect a new leader automatically). Thus, we use Redis
with sentinel [47], which enables automatic failover. Our implementation took only a moderate
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Fig. 14. Redis performance. The figure compares the throughput of immediate, eventual, and Cad durability

layers in Redis. In (a), eventual and Cad synchronously replicate but asynchronously persist; in (b), they

replicate and persist lazily. The number on top of each bar shows the performance normalized to that of

immediate durability.

developer effort: We added or changed less than 1K LOC in Redis. Further, implementing Cad
required little changes to the rest of the system.

Compared to the ZooKeeper implementation, two additional changes were required. First, we
added new structures to quickly lookup the update-index of an item, because Redis does not have
such a structure unlike ZooKeeper. Upon reads, Cad-Redis looks up this structure to perform the
durability check. Second, Redis does not ensure that the leader always has all the committed data
unlike ZooKeeper, i.e., a node that has not seen some updates may be elected the leader. This is
because although the sentinel requires a majority vote to choose the new leader, it does not take
into account the node’s last log index. We thus modified the leader election to take a node’s last
log index into consideration during election. This modification ensures that the chosen node has
all the data that has been read so far, thus ensuring the correctness of Cad.

6.3 Cad Performance

We now evaluate the performance of Cad in Redis. Similar to ZooKeeper, we compare the Cad
version of Redis (Cad-Redis) against immediate-Redis (that uses synchronous replication and syn-
chronous persistence) and eventual-Redis. Figure 14 shows the results. In (a), eventual-Redis and
Cad-Redis perform both replication and persistence lazily; in (b), eventual-Redis and Cad-Redis
perform replication synchronously but persist to storage lazily.

Similar to ZooKeeper, Cad offers performance benefits when compared to immediate durability
in Redis as well. Also, Cad closely matches the performance of eventual durability in Redis for
most workloads.

As shown in Figure 14(a), for write-heavy (load, A, and F) and read-heavy (B) workloads, Cad-
Redis is notably faster (2.14×–4.14×) than immediate-Redis and adds only little overhead when
compared to eventual-Redis (about 10% lower throughput). In the worst-case read-latest work-
load (D), Cad-Redis offers 22% lower throughput than eventual-Redis but is still 77% faster than
immediate-Redis.

Figure 14(b) shows the performance results when the baseline employs asynchronous repli-
cation and persistence. Compared to the case when the baseline replicates synchronously (i.e.,
Figure 14(a)), the difference in performance between Cad-Redis and eventual-Redis is slightly
higher (e.g., 14% lower throughput instead of 10% for workload-B). At the same time, Cad-Redis
is significantly faster than immediate-Redis for many workloads (e.g., 6.22× higher throughput
instead of 4.14× for workload-A). These trends are similar to Cad’s performance in ZooKeeper
shown previously.
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Overall, implementing Cad in another system was fairly straightforward, requiring only min-
imal code changes. Furthermore, similar to the ZooKeeper case, Cad-Redis offers significant per-
formance benefits over immediately durable Redis and closely approximates the performance of
eventually durable Redis.

7 DISCUSSION

In this section, we discuss how Cad can be beneficial for current systems and deployments and
how it can be implemented in other classes of systems (e.g., leaderless ones).

Application usage. As we discussed, most widely used systems lean towards performance and
thus adopt eventual durability. Cad’s primary goal is to improve the guarantees of such systems.
By using Cad, these systems and applications atop them can realize stronger semantics without
forgoing the performance benefits of asynchrony. Further, little or no modifications in application
code are needed to reap the benefits that Cad offers.

A few applications such as configuration stores [20] cannot tolerate any data loss and so require
immediate synchronous durability upon every write. While Cad may not be suitable for this use
case, a storage system that implements Cad can support such applications. For example, in Orca,
applications can optionally request immediate durability by specifying a flag in the write request
(of course, at the cost of performance).

Cad for other classes of systems. While we apply Cad to leader-based systems in this article,
the idea also applies to other systems that establish no or only a causal order of updates. However,
a few changes compared to our implementation for leader-based systems may be required. First,
given that there is no single update order, the system may need to maintain metadata for each
item denoting whether it is durable or not (instead of a single durable-index). Further, when a
non-durable item x is read, instead of making the entire state durable, the system may make only
updates to x or ones causally related to x durable. We leave such extension as an avenue for future
work.

8 RELATED WORK

We now discuss how our work relates to and builds upon prior research.

Consistency models. Prior work has proposed an array of consistency models and studied their
guarantees, availability, and performance [10, 20, 29, 31, 32, 52, 53, 54]. Our work, in contrast,
focuses on how consistency is affected by the underlying durability model. Lee et al. identify and
describe the durability requirements to realize linearizability [27]. In contrast, we explore how to
design a durability primitive that enables strong consistency with high performance.

Durability semantics. Cad’s durability semantic has a similar flavor to that of a few local file
systems. Xsyncfs [39] delays writes to disk until the written data is externalized, realizing high
performance while providing strong guarantees. Similarly, file-system developers have proposed
the O_RSYNC flag [24] that provides similar guarantees to Cad. Although not implemented by
many kernels [24], when specified in open, this flag blocks read calls until the data being read
has been persisted to the disk. BarrierFS’ fbarrier [56] and OptFS’ osync [13] provide delayed
durability semantics similar to Cad; however, unlike Cad, these file systems do not guarantee that
data read by applications will remain durable after crashes. Most of the prior work resolves the
tension between durability and performance in a much simpler single-node setting and within the
file system. To the best of our knowledge, our work is the first to do so in replicated systems and
in the presence of complex failures (e.g., partitions).
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Improving distributed system performance. Several approaches to improving the perfor-
mance of replicated systems using speculation [20, 55], exploiting commutativity [37], and network
ordering [42] have been proposed. However, these prior approaches do not focus on addressing
the overheads of durability, an important concern in storage systems. Orca avoids durability over-
heads by separating consistency from freshness: Reads can be stale but never out-of-order. Lazy-
Base [14] applies a similar idea to analytical processing systems in which reads access only older
versions that have been fully ingested and indexed. However, such an approach often returns staler
results than a weakly consistent system. In contrast, Orca never returns staler data than a weakly
consistent system; further, Orca reduces staleness compared to weak systems by persisting data
on many nodes upon reads (as shown by our experiments). Saucr reduces durability overheads
in the common case but compromises on availability for strong durability in rare situations (e.g.,
in the presence of many simultaneous failures) [1]. Orca makes the opposite tradeoff: It provides
better availability but could lose a few recent updates upon failures.

Cross-client monotonic reads. To the best of our knowledge, cross-client monotonic reads is
provided only by linearizability [27, 40]. However, linearizable systems require immediate dura-
bility and most linearizable systems prevent reads at the followers. Orca offers this property with-
out immediate durability while allowing reads at many nodes. Gaios [11] offers strong consistency
while allowing reads from many replicas. Although Gaios distributes reads across replicas, requests
are still bounced through the leader and thus incur an additional delay to reach the leader. The
leader also requires one additional round trip to check if it is indeed the leader, increasing latency
further. In contrast, Orca allows clients to directly read from the nearest replica, enabling both
load distribution and low latency. Orca avoids the extra round trip (to verify leadership) by using
leases. Orca’s use of leases to provide strong consistency is not new; for example, early work on
cache consistency in distributed file systems has done so [19].

9 CONCLUSION

In this article, we show how the underlying durability model of a distributed system has strong
implications for its consistency and performance. We present consistency-aware durability (Cad),
a new approach to durability that enables both strong consistency and high performance. We show
how cross-client monotonic reads, a strong consistency guarantee can be realized efficiently upon
Cad. While enabling stronger consistency, Cad may not be suitable for a few applications that
cannot tolerate any data loss. However, it offers a new, useful middle ground for many systems
that currently use eventual durability to realize stronger semantics without compromising on per-
formance.
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